Relaxation Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations

This paper presents a relaxation Lax-Friedrichs sweeping scheme to approximate viscosity solutions of static Hamilton Jacobi equations in any number of spatial dimensions. It is a generalization of the scheme proposed in Kao et al. (J Comput Phys 196:367–391, 2004). Numerical examples suggest that the relaxation Lax-Friedrichs sweeping scheme has smaller number of iterations than the original Lax-Friedrichs sweeping scheme when the relaxation factor ω is slightly larger than one. And first order convergence is also demonstrated by numerical results. A theoretical analysis for our scheme in a special case is given.

[1]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[2]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[3]  Chi-Wang Shu HIGH ORDER NUMERICAL METHODS FOR TIME DEPENDENT HAMILTON-JACOBI EQUATIONS , 2007 .

[4]  Rémi Abgrall,et al.  High Order Numerical Discretization for Hamilton–Jacobi Equations on Triangular Meshes , 2000, J. Sci. Comput..

[5]  Chi-Wang Shu,et al.  Central WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes , 2006, SIAM J. Sci. Comput..

[6]  Hongkai Zhao,et al.  Fast Sweeping Methods for Eikonal Equations on Triangular Meshes , 2007, SIAM J. Numer. Anal..

[7]  Danping Peng,et al.  Weighted ENO Schemes for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[8]  R. Newcomb VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS , 2010 .

[9]  Hongkai Zhao,et al.  Fixed-point iterative sweeping methods for static hamilton-Jacobi Equations , 2006 .

[10]  W. Symes,et al.  Paraxial eikonal solvers for anisotropic quasi-P travel times , 2001 .

[11]  Hongkai Zhao,et al.  High Order Fast Sweeping Methods for Static Hamilton–Jacobi Equations , 2006, J. Sci. Comput..

[12]  S. Osher A level set formulation for the solution of the Dirichlet problem for Hamilton-Jacobi equations , 1993 .

[13]  P. Lions,et al.  Two approximations of solutions of Hamilton-Jacobi equations , 1984 .

[14]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[15]  R. Abgrall Numerical discretization of the first‐order Hamilton‐Jacobi equation on triangular meshes , 1996 .

[16]  Wang Hai-bing,et al.  High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations , 2006 .

[17]  Chi-Wang Shu,et al.  A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations , 1999, SIAM J. Sci. Comput..

[18]  S. Osher,et al.  Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations , 2004 .

[19]  S. Gray,et al.  Kirchhoff migration using eikonal equation traveltimes , 1994 .

[20]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Richard I. Cook,et al.  3-D traveltime computation using second‐order ENO scheme , 1999 .

[22]  Hongkai Zhao,et al.  A Fast Sweeping Method for Static Convex Hamilton–Jacobi Equations , 2007, J. Sci. Comput..

[23]  Chi-Wang Shu,et al.  High-Order WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes , 2003, SIAM J. Sci. Comput..