Failure modes and mechanisms for rechargeable Lithium-based batteries: a state-of-the-art review

The Li-ion battery (LiB) is regarded as one of the most popular energy storage devices for a wide variety of applications. Since their commercial inception in the 1990s, LiBs have dominated the consumer market of portable electronic devices, especially for laptops, cell phones, and many medical devices. As the transition of Li-ion batteries from being used in portable electronic devices to longer lifetime and more safety-critical applications, such as electric cars, electrically powered underwater vehicles, and aircrafts, the price of failure has become much more important in terms of both liability and cost (Hendricks et al. in J Power Sources 297:113–120, 2015). This paper reviews the current development and potential problems of Li-ion batteries, particularly focusing on the failure mechanism and its possible solutions of Li-ion batteries. It has been a general consensus that Li-ion batteries will continue to dominate the battery market in the foreseen future as a convenient electric power source. Finally, this paper provides authors’ perspectives on future directions and challenges on experimental and computational modeling aspects of Li-based battery researches, in particular, the failure analysis of Li-based batteries.

[1]  Qingsong Wang,et al.  Thermal runaway caused fire and explosion of lithium ion battery , 2012 .

[2]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[3]  Martin Z. Bazant,et al.  Coherency Strain and the Kinetics of Phase Separation in LiFePO [subscript 4] , 2012 .

[4]  Rachid Yazami,et al.  A reversible graphite-lithium negative electrode for electrochemical generators , 1983 .

[5]  Shaofan Li,et al.  Meshfree simulations of spall fracture , 2011 .

[6]  J. D. Eshelby,et al.  The force on an elastic singularity , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[7]  M. Yoshio,et al.  Practical silicon-based composite anodes for lithium-ion batteries: Fundamental and technological features , 2007 .

[8]  Vincent Chevrier,et al.  First Principles Studies of Disordered Lithiated Silicon , 2010 .

[9]  Hyun-Wook Lee,et al.  A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. , 2014, Nature nanotechnology.

[10]  Shaofan Li,et al.  Application of Multiscale Cohesive Zone Model to Simulate Fracture in Polycrystalline Solids , 2011 .

[11]  B. Su,et al.  Engineering 3D bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite for lithium storage with high rate capability and long cycle stability , 2016, Scientific Reports.

[12]  Yi Cui,et al.  Mechanical behavior of electrochemically lithiated silicon , 2015 .

[13]  Yang Liu,et al.  Anisotropic swelling and fracture of silicon nanowires during lithiation. , 2011, Nano letters.

[14]  Fuqian Yang Interaction between diffusion and chemical stresses , 2005 .

[15]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[16]  M. Doeff,et al.  TEM Study of Fracturing in Spherical and Plate-like LiFePO4 Particles , 2008 .

[17]  Da Deng,et al.  Li‐ion batteries: basics, progress, and challenges , 2015 .

[18]  D. Macfarlane,et al.  Characterization of the Magnesium Alloy AZ31 Surface in the Ionic Liquid Trihexyl(tetradecyl)phosphonium Bis(trifluoromethanesulfonyl)amide , 2010 .

[19]  William A. Curtin,et al.  Modelling diffusion in crystals under high internal stress gradients , 2004 .

[20]  Gang Liu,et al.  Enhanced electrochemical properties of LiFePO4 cathode for Li-ion batteries with amorphous NiP coating , 2010 .

[21]  T. Hufnagel,et al.  Mechanical behavior of amorphous alloys , 2007 .

[22]  F. Gao,et al.  A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries , 2012 .

[23]  Yayuan Liu,et al.  Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. , 2016, Nature nanotechnology.

[24]  B. Simon,et al.  Carbon materials for lithium-ion rechargeable batteries , 1999 .

[25]  Chunbo Zhu,et al.  A review on fault mechanism and diagnosis approach for Li-Ion batteries , 2015 .

[26]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[27]  W. Goddard,et al.  Annealing kinetics of electrodeposited lithium dendrites. , 2015, The Journal of chemical physics.

[28]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[29]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .

[30]  A. V. van Duin,et al.  Mechanical properties of amorphous LixSi alloys: a reactive force field study , 2013 .

[31]  Asma Sharafi,et al.  Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte , 2017 .

[32]  Jian Yu Huang,et al.  Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. , 2012, Nano letters.

[33]  G. Wagner,et al.  Phase Field Modeling of Solid Electrolyte Interface Formation in Lithium Ion Batteries , 2013 .

[34]  Hui Wu,et al.  A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. , 2012, Nano letters.

[35]  J. Besenhard,et al.  High energy density lithium cellsPart I. Electrolytes and anodes , 1976 .

[36]  Zhenwei Cao,et al.  An overview of lithium-ion batteries for electric vehicles , 2012, 2012 10th International Power & Energy Conference (IPEC).

[37]  Yet-Ming Chiang,et al.  Aliovalent Substitutions in Olivine Lithium Iron Phosphate and Impact on Structure and Properties , 2009 .

[38]  Yang Liu,et al.  Tough germanium nanoparticles under electrochemical cycling. , 2013, ACS nano.

[39]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[40]  J. Steiger,et al.  Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium , 2014 .

[41]  J. Yamaki,et al.  A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte , 1997 .

[42]  D. Wood,et al.  Cathode materials review , 2014 .

[43]  X. Sun,et al.  Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries , 2012 .

[44]  Charles Delacourt,et al.  Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy , 2006 .

[45]  Giovanni Ciccotti,et al.  Book Review: Classical and Quantum Dynamics in Condensed Phase Simulations , 1998 .

[46]  Ismaila Dabo,et al.  Quantum–continuum simulation of underpotential deposition at electrified metal–solution interfaces , 2017, npj Computational Materials.

[47]  L. Gray,et al.  Kinetically Driven Growth Instability in Stressed Solids , 1998 .

[48]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[49]  Rui Zhang,et al.  Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. , 2017, Chemical reviews.

[50]  Allan F. Bower,et al.  Measurement and modeling of the mechanical and electrochemical response of amorphous Si thin film electrodes during cyclic lithiation , 2013, 1311.5844.

[51]  Jianlin Li,et al.  Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries , 2016 .

[52]  M. Verbrugge,et al.  Modeling diffusion-induced stress in nanowire electrode structures , 2010 .

[53]  Z. Suo,et al.  Averting cracks caused by insertion reaction in lithium–ion batteries , 2010 .

[54]  K. Leung Electronic Structure Modeling of Electrochemical Reactions at Electrode/Electrolyte Interfaces in Lithium Ion Batteries , 2012, 1304.5976.

[55]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[56]  Arif I. Sarwat,et al.  A review of cathode and anode materials for lithium-ion batteries , 2016, SoutheastCon 2016.

[57]  J. Tarascon,et al.  New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells , 1994 .

[58]  S. Lanceros‐Méndez,et al.  Mild hydrothermal synthesis and crystal morphology control of LiFePO4 by lithium nitrate , 2017 .

[59]  Sulin Zhang,et al.  Chemomechanical modeling of lithiation-induced failure in high-volume-change electrode materials for lithium ion batteries , 2017, npj Computational Materials.

[60]  Jean-Marie Tarascon,et al.  Live Scanning Electron Microscope Observations of Dendritic Growth in Lithium/Polymer Cells , 2002 .

[61]  H. Nakanishi,et al.  Crystal and electronic structure of Li15Si4 , 2007 .

[62]  Hanqing Jiang,et al.  A finite element simulation on transient large deformation and mass diffusion in electrodes for lithium ion batteries , 2013 .

[63]  W. Goddard,et al.  Thermal relaxation of lithium dendrites. , 2015, Physical chemistry chemical physics : PCCP.

[64]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[65]  Rajeswari Chandrasekaran,et al.  Analysis of Lithium Insertion/Deinsertion in a Silicon Electrode Particle at Room Temperature , 2010 .

[66]  Anming Hu,et al.  Si-Based Anode Materials for Li-Ion Batteries: A Mini Review , 2014, Nano-Micro Letters.

[67]  William A Goddard,et al.  Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations. , 2014, The journal of physical chemistry letters.

[68]  Vincent Chevrier,et al.  First Principles Model of Amorphous Silicon Lithiation , 2009 .

[69]  Shaofan Li,et al.  A multiscale cohesive zone model and simulations of fractures , 2010 .

[70]  Rahul Malik,et al.  Erratum: A Critical Review of the Li Insertion Mechanisms in LiFePO 4 Electrodes [ J. Electrochem. Soc., 160, A3179 (2013)] , 2016 .

[71]  Zhigang Suo,et al.  Lithium-assisted Plastic Deformation of Silicon Electrodes in Lithium-ion Batteries: a First-principles Theoretical Study , 2022 .

[72]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[73]  G. Yushin,et al.  Ex-situ depth-sensing indentation measurements of electrochemically produced Si-Li alloy films , 2011 .

[74]  Jaephil Cho,et al.  A critical size of silicon nano-anodes for lithium rechargeable batteries. , 2010, Angewandte Chemie.

[75]  Shaofan Li,et al.  A hierarchical multiscale cohesive zone model and simulation of dynamic fracture in metals , 2016 .

[76]  Meilin Liu,et al.  Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives , 2011 .

[77]  B. Scrosati,et al.  A Disordered Carbon as a Novel Anode Material in Lithium‐Ion Cells , 2005 .

[78]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[79]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[80]  B. Scrosati,et al.  Lithium-ion rechargeable batteries , 1994 .

[81]  Jean-Marie Tarascon,et al.  Hunting for Better Li-Based Electrode Materials via Low Temperature Inorganic Synthesis† , 2010 .

[82]  Sudhir B. Kylasa,et al.  The ReaxFF reactive force-field: development, applications and future directions , 2016 .

[83]  Aziz,et al.  The activation strain tensor: Nonhydrostatic stress effects on crystal-growth kinetics. , 1991, Physical review. B, Condensed matter.

[84]  G. Cao,et al.  Understanding electrochemical potentials of cathode materials in rechargeable batteries , 2016 .

[85]  Efthimios Kaxiras,et al.  Stress effects on the initial lithiation of crystalline silicon nanowires: reactive molecular dynamics simulations using ReaxFF. , 2015, Physical chemistry chemical physics : PCCP.

[86]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[87]  Ting Zhu,et al.  A Phase-Field Model Coupled with Large Elasto-Plastic Deformation: Application to Lithiated Silicon Electrodes , 2014 .

[88]  Venkat Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[89]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[90]  Palani Balaya,et al.  Anisotropy of Electronic and Ionic Transport in LiFePO4 Single Crystals , 2007 .

[91]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[92]  Shaofan Li,et al.  An atomistic-based interphase zone model for crystalline solids , 2012 .

[93]  W. R. McKinnon,et al.  Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn[sub 2]O[sub 4] , 1994 .

[94]  J. Besenhard,et al.  Cathodic reduction of graphite in organic solutions of alkali and NR4+ salts , 1974 .

[95]  M. Scarselli,et al.  Electronic and optoelectronic nano-devices based on carbon nanotubes , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[96]  Hua Cheng,et al.  Pulsed Laser Deposition and Electrochemical Characterization of LiFePO4-Ag Composite Thin Films** , 2007 .

[97]  Yet-Ming Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[98]  A. MacDowell,et al.  Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. , 2014, Nature materials.

[99]  Aniruddha Jana,et al.  Phase field kinetics of lithium electrodeposits , 2014 .

[100]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[101]  G. Ceder,et al.  Elastic properties of olivine LixFePO4 from first principles , 2006 .

[102]  Li Yang,et al.  Recent progress in conversion reaction metal oxide anodes for Li-ion batteries , 2017 .

[103]  P. Ajayan,et al.  Porous Spinel Zn(x)Co(3-x)O(4) hollow polyhedra templated for high-rate lithium-ion batteries. , 2014, ACS nano.

[104]  Colm O'Dwyer,et al.  Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. , 2015, Physical chemistry chemical physics : PCCP.

[105]  W. Shyy,et al.  Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles , 2007 .

[106]  John Newman,et al.  Stress generation and fracture in lithium insertion materials , 2005 .

[107]  T. P. Kumar,et al.  Materials for next-generation lithium batteries , 2008 .

[108]  J. Besenhard,et al.  High energy density lithium cells: Part II. Cathodes and complete cells , 1976 .

[109]  F.P. Tredeau,et al.  Performance evaluation of Lithium Cobalt cells and the suitability for use in electric vehicles , 2008, 2008 IEEE Vehicle Power and Propulsion Conference.

[110]  R. Schöllhorn,et al.  The discharge reaction mechanism of the MoO3 electrode in organic electrolytes , 1976 .

[111]  Huajian Gao,et al.  Continuum and atomistic models of strongly coupled diffusion, stress, and solute concentration , 2011 .

[112]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[113]  Chongmin Wang,et al.  Strong kinetics-stress coupling in lithiation of Si and Ge anodes , 2015 .

[114]  Yunfang Gao,et al.  Solvothermal synthesis of uniform Li3V2(PO4)3/C nanoparticles as cathode materials for lithium ion batteries , 2015 .

[115]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[116]  Li-Jun Wan,et al.  LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy‐Storage Devices , 2009, Advanced materials.

[117]  Lei Chen,et al.  Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model , 2015 .

[118]  Michael Pecht,et al.  A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries , 2015 .

[119]  Min Gyu Kim,et al.  Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries , 2009 .

[120]  Shengping Wang,et al.  Preparation and Doping Mode of Doped LiMn 2 O 4 for Li-Ion Batteries , 2013 .

[121]  T. Takaki Phase-field Modeling and Simulations of Dendrite Growth , 2014 .

[122]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[123]  Jun Lu,et al.  State-of-the-art characterization techniques for advanced lithium-ion batteries , 2017, Nature Energy.

[124]  W. Craig Carter,et al.  Design criteria for electrochemical shock resistant battery electrodes , 2012 .

[125]  Kim F. Ferris,et al.  Investigating the Effects of Anisotropic Mass Transport on Dendrite Growth in High Energy Density Lithium Batteries , 2016 .

[126]  Zhigang Suo,et al.  Measurements of the fracture energy of lithiated silicon electrodes of Li-ion batteries. , 2013, Nano letters.

[127]  R. Huggins,et al.  Thermodynamic investigations of ternary lithium-transition metal-oxygen cathode materials , 1980 .

[128]  Qi Li,et al.  Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries , 2017, Science Advances.

[129]  Xiaodong Wu,et al.  Cracking causing cyclic instability of LiFePO4 cathode material , 2005 .

[130]  M. Pharr Diffusion, Deformation, and Damage in Lithium-Ion Batteries and Microelectronics , 2014 .

[131]  Huajian Gao,et al.  Microscopic model for fracture of crystalline Si nanopillars during lithiation , 2014 .

[132]  J. Besenhard,et al.  Topotactic redox reactions and ion exchange of layered MoO3 bronzes , 1976 .

[133]  J. Dahn,et al.  First principles studies of silicon as a negative electrode material for lithium-ion batteries , 2009 .

[134]  G. Nagasubramanian,et al.  Electrical and electrochemical performance characteristics of large capacity lithium-ion cells , 1999 .

[135]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[136]  K. Zhou,et al.  Tuning ZnSe/CoSe in MOF-derived N-doped porous carbon/CNTs for high-performance lithium storage , 2018 .

[137]  Robert M. Darling,et al.  Modeling a Porous Intercalation Electrode with Two Characteristic Particle Sizes , 1997 .

[138]  Rahul Malik,et al.  A Critical Review of the Li Insertion Mechanisms in LiFePO4 Electrodes , 2013 .

[139]  Shuru Chen,et al.  Silicon core-hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries. , 2012, Physical chemistry chemical physics : PCCP.

[140]  Daniel A. Cogswell,et al.  Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. , 2011, ACS nano.

[141]  J. D. Eshelby The elastic energy-momentum tensor , 1975 .

[142]  Yi Cui,et al.  Anisotropic Lithium Insertion Behavior in Silicon Nanowires: Binding Energy, Diffusion Barrier, and Strain Effect , 2011 .

[143]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[144]  D. Aurbach,et al.  Attempts to Improve the Behavior of Li Electrodes in Rechargeable Lithium Batteries , 2002 .

[145]  R. Chianelli,et al.  Microscopic studies of transition metal chalcogenides , 1976 .

[146]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[147]  Martin Z Bazant,et al.  Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. , 2012, Accounts of chemical research.

[148]  M. Demkowicz,et al.  What Can Plasticity of Amorphous Silicon Tell Us about Plasticity of Metallic Glasses? , 2008 .

[149]  Thomas J. Richardson,et al.  Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition , 2006 .

[150]  J. Besenhard The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes , 1976 .

[151]  C. R. Martin,et al.  Carbon nanotubule membranes for electrochemical energy storage and production , 1998, Nature.

[152]  Tanmay K. Bhandakkar,et al.  Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: Implications on the critical size for flaw tolerant battery electrodes , 2010 .

[153]  Rahul Malik,et al.  Kinetics of non-equilibrium lithium incorporation in LiFePO4. , 2011, Nature materials.

[154]  Shaofan Li,et al.  Meshfree simulations of plugging failures in high-speed impacts , 2010 .

[155]  山本 治,et al.  Lithium ion batteries : fundamentals and performance , 1998 .