A Spectroscopic Road Map for Cosmic Frontier: DESI, DESI-II, Stage-5

In this white paper, we present an experimental road map for spectroscopic experiments beyond DESI. DESI will be a transformative cosmological survey in the 2020s, mapping 40 million galaxies and quasars and capturing a significant fraction of the available linear modes up to z = 1.2. DESI-II will pilot observations of galaxies both at much higher densities and extending to higher redshifts. A Stage-5 experiment would build out those high-density and high-redshift observations, mapping hundreds of millions of stars and galaxies in three dimen-

[1]  E. Linder,et al.  Constraining Scale Dependent Growth with Redshift Surveys , 2022, 2208.10508.

[2]  A. Myers,et al.  Target Selection and Validation of DESI Emission Line Galaxies , 2022, The Astronomical Journal.

[3]  Sergey E. Koposov,et al.  The Target Selection Pipeline for the Dark Energy Spectroscopic Instrument , 2022, 2208.08518.

[4]  A. Myers,et al.  The DESI Bright Galaxy Survey: Final Target Selection, Design, and Validation , 2022, The Astronomical Journal.

[5]  A. Myers,et al.  Target Selection and Validation of DESI Luminous Red Galaxies , 2022, Astronomical Journal.

[6]  A. Myers,et al.  Target Selection and Validation of DESI Quasars , 2022, The Astrophysical Journal.

[7]  K. Liao,et al.  Strongly Lensed Transient Sources: A Review , 2022, 2207.13489.

[8]  P. J. Richards,et al.  Gaia Data Release 3. Summary of the content and survey properties , 2022, Astronomy & Astrophysics.

[9]  O. Philcox Probing Parity-Violation with the Four-Point Correlation Function of BOSS Galaxies , 2022, 2206.04227.

[10]  R. Cahn,et al.  Measurement of Parity-Odd Modes in the Large-Scale 4-Point Correlation Function of SDSS BOSS DR12 CMASS and LOWZ Galaxies , 2022, 2206.03625.

[11]  A. Barreira Can we actually constrain $f_{\rm NL}$ using the scale-dependent bias effect? An illustration of the impact of galaxy bias uncertainties using the BOSS DR12 galaxy power spectrum , 2022, 2205.05673.

[12]  M. White,et al.  Cosmological analysis of three-dimensional BOSS galaxy clustering and Planck CMB lensing cross correlations via Lagrangian perturbation theory , 2022, Journal of Cosmology and Astroparticle Physics.

[13]  M. Sullivan,et al.  Snowmass2021 Cosmic Frontier White Paper: Enabling Flagship Dark Energy Experiments to Reach their Full Potential , 2022, 2204.01992.

[14]  Devendra Singh Chaplot,et al.  Overleaf Example , 2022 .

[15]  Duncan A. Brown,et al.  Snowmass2021 Cosmic Frontier White Paper: Future Gravitational-Wave Detector Facilities , 2022, 2203.08228.

[16]  R. Wechsler,et al.  Snowmass2021 Theory Frontier White Paper: Data-Driven Cosmology , 2022, 2203.07946.

[17]  Zachary J. Weiner,et al.  The Physics of Light Relics , 2022, 2203.07943.

[18]  Sergey E. Koposov,et al.  Snowmass2021 Cosmic Frontier White Paper: Prospects for obtaining Dark Matter Constraints with DESI , 2022, 2203.07491.

[19]  A. Slosar,et al.  Snowmass2021 Cosmic Frontier White Paper: Cosmology and Fundamental Physics from the three-dimensional Large Scale Structure , 2022, 2203.07506.

[20]  Synergy between cosmological and laboratory searches in neutrino physics: a white paper , 2022, 2203.07377.

[21]  A. Leauthaud,et al.  Snowmass2021 Cosmic Frontier White Paper: Dark Matter Physics from Halo Measurements , 2022, 2203.07354.

[22]  Andrew P. Hearin,et al.  Snowmass2021 Cosmic Frontier White Paper: High Density Galaxy Clustering in the Regime of Cosmic Acceleration , 2022, 2203.07291.

[23]  J. Newman,et al.  Snowmass2021 Cosmic Frontier White Paper: Rubin Observatory after LSST , 2022, 2203.07220.

[24]  X. Siemens,et al.  Snowmass2021 Cosmic Frontier White Paper: Fundamental Physics and Beyond the Standard Model , 2022, 2203.06240.

[25]  Duncan A. Brown,et al.  Snowmass2021 Cosmic Frontier White Paper: Observational Facilities to Study Dark Matter , 2022, 2203.06200.

[26]  Ryan E. Keeley,et al.  Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies , 2022, Journal of High Energy Astrophysics.

[27]  G. Hinshaw,et al.  Detection of Cosmological 21 cm Emission with the Canadian Hydrogen Intensity Mapping Experiment , 2022, The Astrophysical Journal.

[28]  V. Poulin,et al.  Improved cosmological constraints on the neutrino mass and lifetime , 2021, Journal of High Energy Physics.

[29]  G. Zamorani,et al.  COSMOS2020: A Panchromatic View of the Universe to z ∼ 10 from Two Complementary Catalogs , 2021, The Astrophysical Journal Supplement Series.

[30]  D. Green,et al.  Cosmological implications of axion-matter couplings , 2021, Journal of Cosmology and Astroparticle Physics.

[31]  P. Hopkins,et al.  Shapes of Milky-Way-mass galaxies with Self-Interacting Dark Matter , 2021, Monthly Notices of the Royal Astronomical Society.

[32]  R. Cahn,et al.  Test for Cosmological Parity Violation Using the 3D Distribution of Galaxies. , 2021, Physical review letters.

[33]  Duncan A. Brown,et al.  A Horizon Study for Cosmic Explorer: Science, Observatories, and Community , 2021, 2109.09882.

[34]  D. Green,et al.  Neutrino interactions in the late universe , 2021, Journal of High Energy Physics.

[35]  L. Knox,et al.  The Physical Origin of Dark Energy Constraints from Rubin Observatory and CMB-S4 Lensing Tomography , 2021, 2108.02801.

[36]  Z. Slepian,et al.  Clustering in massive neutrino cosmologies via Eulerian Perturbation Theory , 2021, Journal of Cosmology and Astroparticle Physics.

[37]  M. White,et al.  Cosmology at high redshift — a probe of fundamental physics , 2021, Journal of Cosmology and Astroparticle Physics.

[38]  C. Tao,et al.  The Twins Embedding of Type Ia Supernovae. I. The Diversity of Spectra at Maximum Light , 2021, The Astrophysical Journal.

[39]  C. Tao,et al.  The Twins Embedding of Type Ia Supernovae. II. Improving Cosmological Distance Estimates , 2021, The Astrophysical Journal.

[40]  J. Frieman,et al.  Dark Energy Survey Year 3 results: redshift calibration of the weak lensing source galaxies , 2020, Monthly Notices of the Royal Astronomical Society.

[41]  M. Vargas-Magaña,et al.  Towards testing the theory of gravity with DESI: summary statistics, model predictions and future simulation requirements , 2020, Journal of Cosmology and Astroparticle Physics.

[42]  Alex Drlica-Wagner,et al.  Characterization of skipper CCDs for cosmological applications , 2020, Astronomical Telescopes + Instrumentation.

[43]  M. Drewes,et al.  Towards a precision calculation of $N_{\rm eff}$ in the Standard Model II: Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED , 2020, 2012.02726.

[44]  Z. Slepian,et al.  A Non-Degenerate Neutrino Mass Signature in the Galaxy Bispectrum , 2020, 2011.00899.

[45]  A. Kim,et al.  Be It Unresolved: Measuring Time Delays from Lensed Supernovae , 2020, The Astrophysical Journal.

[46]  J. Kneib,et al.  The completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: a catalogue of strong galaxy–galaxy lens candidates , 2020, 2007.09006.

[47]  A. Cimatti,et al.  HST Grism-derived Forecasts for Future Galaxy Redshift Surveys , 2020, The Astrophysical Journal.

[48]  Y.Fujii,et al.  Overview of KAGRA: Detector design and construction history , 2020, Progress of Theoretical and Experimental Physics.

[49]  A. Palmese,et al.  Probing gravity and growth of structure with gravitational waves and galaxies’ peculiar velocity , 2020, Physical Review D.

[50]  G. Bernstein,et al.  Propagating sample variance uncertainties in redshift calibration: simulations, theory, and application to the COSMOS2015 data , 2020, Monthly Notices of the Royal Astronomical Society.

[51]  E. Linder,et al.  Exploring early and late cosmology with next generation surveys , 2020, Physical Review D.

[52]  A. Kim,et al.  Complementarity of peculiar velocity surveys and redshift space distortions for testing gravity , 2019, Physical Review D.

[53]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[54]  P. J. Richards,et al.  Gaia Early Data Release 3 Summary of the contents and survey properties , 2020 .

[55]  Adam D. Myers,et al.  Astro2020 APC White Paper: The MegaMapper: a z > 2 Spectroscopic Instrument for the Study of Inflation and Dark Energy , 2019, 1907.11171.

[56]  Ting Li,et al.  The Maunakea Spectroscopic Explorer , 2019, 1907.07192.

[57]  J. Rhodes,et al.  FOBOS: A Next-Generation Spectroscopic Facility at the W. M. Keck Observatory , 2019, 1907.07195.

[58]  J. Brinchmann,et al.  SpecTel: A 10-12 meter class Spectroscopic Survey Telescope , 2019, 1907.06797.

[59]  F. Beutler,et al.  Primordial features from linear to nonlinear scales , 2019, 1906.08758.

[60]  R. B. Barreiro,et al.  Planck 2018 results. IX. Constraints on primordial non-Gaussianity , 2019, 1905.05697.

[61]  Christopher W. Stubbs,et al.  Report on LSST Next-generation Instrumentation Workshop, April 11, 12 2019 , 2019, 1905.04669.

[62]  M. White,et al.  Cosmology with dropout selection: straw-man surveys & CMB lensing , 2019, Journal of Cosmology and Astroparticle Physics.

[63]  Cora Dvorkin,et al.  Scratches from the Past: Inflationary Archaeology through Features in the Power Spectrum of Primordial Fluctuations , 2019 .

[64]  Michelle Lochner,et al.  Wide-field Multi-object Spectroscopy to Enhance Dark Energy Science from LSST Thematic , 2019 .

[65]  Michelle Lochner,et al.  Deep Multi-object Spectroscopy to Enhance Dark Energy Science from LSST , 2019, 1903.09325.

[66]  Julian Borrill,et al.  Inflation and Dark Energy from spectroscopy at $z>2$ , 2019, 1903.09208.

[67]  A. Slosar,et al.  Testing Gravity Using Type Ia Supernovae Discovered by Next-Generation Wide-Field Imaging Surveys , 2019, 1903.07652.

[68]  Benjamin Rose,et al.  Messengers from the Early Universe: Cosmic Neutrinos and Other Light Relics , 2019, 1903.04763.

[69]  Eleonora Di Valentino,et al.  Gravitational wave cosmology and astrophysics with large spectroscopic galaxy surveys , 2019, 1903.04730.

[70]  Benjamin Rose,et al.  Dark Matter Science in the Era of LSST , 2019, 1903.04425.

[71]  A. Bolton,et al.  Astrophysical Tests of Dark Matter with Maunakea Spectroscopic Explorer , 2019, 1903.03155.

[72]  Nathan Golovich,et al.  Probing the Fundamental Nature of Dark Matter with the Large Synoptic Survey Telescope , 2019, 1902.01055.

[73]  S. Matarrese,et al.  Primordial Non-Gaussianity , 2018, 1812.08197.

[74]  Kendrick M. Smith,et al.  Transverse Velocities with the Moving Lens Effect. , 2018, Physical review letters.

[75]  P. Nugent,et al.  Rates and Properties of Supernovae Strongly Gravitationally Lensed by Elliptical Galaxies in Time-domain Imaging Surveys , 2018, The Astrophysical Journal Supplement Series.

[76]  Adam D. Myers,et al.  Overview of the DESI Legacy Imaging Surveys , 2018, The Astronomical Journal.

[77]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[78]  Simone Ferraro,et al.  KSZ tomography and the bispectrum , 2018, 1810.13423.

[79]  Simone Ferraro,et al.  Toward neutrino mass from cosmology without optical depth information , 2018, Physical Review D.

[80]  Brian Keating,et al.  The Simons Observatory: instrument overview , 2018, Astronomical Telescopes + Instrumentation.

[81]  A. Myers,et al.  Quasars Probing Quasars. X. The Quasar Pair Spectral Database , 2018, The Astrophysical Journal Supplement Series.

[82]  M. Buckley,et al.  Gravitational probes of dark matter physics , 2017, Physics Reports.

[83]  Uros Seljak,et al.  Parameter constraints from cross-correlation of CMB lensing with galaxy clustering , 2017, Physical Review D.

[84]  J. Rhodes,et al.  Predicting Hα emission-line galaxy counts for future galaxy redshift surveys , 2017, 1710.00833.

[85]  M. Blomqvist,et al.  The SDSS-DR12 large-scale cross-correlation of damped Lyman alpha systems with the Lyman alpha forest , 2017, 1709.00889.

[86]  T. Nagao,et al.  Systematic Identification of LAEs for Visible Exploration and Reionization Research Using Subaru HSC (SILVERRUSH). I. Program strategy and clustering properties of ∼2000 Lyα emitters at z = 6–7 over the 0.3–0.5 Gpc2 survey area , 2017, 1704.07455.

[87]  A. Bolton,et al.  The Sloan Lens ACS Survey. XIII. Discovery of 40 New Galaxy-scale Strong Lenses , 2017, 1711.00072.

[88]  B. Metzger,et al.  Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event , 2017, Nature.

[89]  Texas Tech University,et al.  Multi-messenger observations of a binary neutron star merger , 2017, 1710.05833.

[90]  M. White,et al.  Modeling CMB lensing cross correlations with CLEFT , 2017, 1706.03173.

[91]  Mohammad Akhlaghi,et al.  Great Optically Luminous Dropout Research Using Subaru HSC (GOLDRUSH). I. UV Luminosity Functions at $z \sim 4-7$ Derived with the Half-Million Dropouts on the 100 deg$^2$ Sky , 2017, 1704.06004.

[92]  W. Percival,et al.  The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: final Emission Line Galaxy Target Selection , 2017, 1704.00338.

[93]  A. Raccanelli Gravitational wave astronomy with radio galaxy surveys , 2016, 1609.09377.

[94]  Z. Cai,et al.  Mapping the Most Massive Overdensities through Hydrogen (MAMMOTH). II. Discovery of the Extremely Massive Overdensity BOSS1441 at z = 2.32 , 2016, 1609.02913.

[95]  M. Jarvis,et al.  Lyman-break galaxies , 2017 .

[96]  O. Dor'e,et al.  Biasing and the search for primordial non-Gaussianity beyond the local type , 2016, 1612.06366.

[97]  E. Pajer,et al.  How Gaussian can our Universe be? , 2016, 1612.00033.

[98]  P. Meerburg,et al.  Prospects for cosmological collider physics , 2016, 1610.06559.

[99]  Adrian T. Lee,et al.  CMB-S4 Science Book, First Edition , 2016, 1610.02743.

[100]  Enectali Figueroa-Feliciano,et al.  Dark Sectors 2016 Workshop: Community Report , 2016, 1608.08632.

[101]  S. Bird,et al.  Determining the progenitors of merging black-hole binaries , 2016, 1605.01405.

[102]  K. Shimasaku,et al.  BRIGHT AND FAINT ENDS OF Lyα LUMINOSITY FUNCTIONS AT z = 2 DETERMINED BY THE SUBARU SURVEY: IMPLICATIONS FOR AGNs, MAGNIFICATION BIAS, AND ISM H I EVOLUTION , 2015, 1512.01854.

[103]  A. Myers,et al.  THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: LUMINOUS RED GALAXY TARGET SELECTION , 2015, 1508.04478.

[104]  Adam A. Miller,et al.  THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION , 2015, 1508.04472.

[105]  Juan Maldacena,et al.  Cosmological Collider Physics , 2015, 1503.08043.

[106]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[107]  Matias Zaldarriaga,et al.  Testing Inflation with Large Scale Structure: Connecting Hopes with Reality , 2014, 1412.4671.

[108]  Adam D. Myers,et al.  THE DISCOVERY OF THE FIRST “CHANGING LOOK” QUASAR: NEW INSIGHTS INTO THE PHYSICS AND PHENOMENOLOGY OF ACTIVE GALACTIC NUCLEI , 2014, 1412.2136.

[109]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[110]  A. Bolton,et al.  Inference of the cold dark matter substructure mass function at z = 0.2 using strong gravitational lenses , 2014, 1405.3666.

[111]  Abhilash Mishra,et al.  Inflationary Freedom and Cosmological Neutrino Constraints , 2014, 1401.7022.

[112]  Judith G. Cohen,et al.  Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph , 2012, 1206.0737.

[113]  Dan Maoz,et al.  Discovery of 90 Type Ia supernovae among 700 000 Sloan spectra: the Type Ia supernova rate versus galaxy mass and star formation rate at redshift ∼0.1 , 2012, 1209.0008.

[114]  A. Myers,et al.  BROAD ABSORPTION LINE DISAPPEARANCE ON MULTI-YEAR TIMESCALES IN A LARGE QUASAR SAMPLE , 2012, 1208.0836.

[115]  L. G. Boté,et al.  Laser Interferometer Space Antenna , 2012 .

[116]  J. Frieman,et al.  THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH. V. FINAL CATALOG FROM THE SEVENTH DATA RELEASE , 2012, 1203.1087.

[117]  Adam D. Myers,et al.  THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE , 2011, 1105.0606.

[118]  Alice E. Shapley,et al.  Physical Properties of Galaxies from z = 2–4 , 2011, 1107.5060.

[119]  P. Dubath,et al.  The Impact of Gaia and LSST on Binaries and Exoplanets , 2011, Proceedings of the International Astronomical Union.

[120]  V. Mukhanov INFLATION: THEORY AND OBSERVATIONS , 2010 .

[121]  Kevin Bandura,et al.  An intensity map of hydrogen 21-cm emission at redshift z ≈ 0.8 , 2010, Nature.

[122]  J. Prochaska,et al.  GALEX FAR-ULTRAVIOLET COLOR SELECTION OF UV-BRIGHT HIGH-REDSHIFT QUASARS , 2010, 1004.3347.

[123]  B. Jain,et al.  Cosmological Tests of Gravity , 2010, 1004.3294.

[124]  Yi Wang,et al.  Quasi-Single Field Inflation and Non-Gaussianities , 2009, 0911.3380.

[125]  D. Stinebring,et al.  The International Pulsar Timing Array project: using pulsars as a gravitational wave detector , 2009, 0911.5206.

[126]  A. Bolton,et al.  Detection of a dark substructure through gravitational imaging , 2009, 0910.0760.

[127]  T. Treu,et al.  LYMAN BREAK GALAXIES AT z ≈ 1.8–2.8: GALEX/NUV IMAGING OF THE SUBARU DEEP FIELD , 2009, 0902.4712.

[128]  T. Boroson,et al.  A candidate sub-parsec supermassive binary black hole system , 2009, Nature.

[129]  Robert J. Brunner,et al.  The 2dF-SDSS LRG and QSO Survey: the spectroscopic QSO catalogue , 2008, 0810.4955.

[130]  M. Colpi,et al.  SDSSJ092712.65+294344.0: a candidate massive black hole binary , 2008, 0809.3446.

[131]  Roy Maartens,et al.  Dark Energy and Modified Gravity , 2008, 0811.4132.

[132]  M. Eracleous,et al.  SDSS J092712.65+294344.0: RECOILING BLACK HOLE OR A SUBPARSEC BINARY CANDIDATE? , 2008, 0809.3262.

[133]  S. Komossa,et al.  A Recoiling Supermassive Black Hole in the Quasar SDSS J092712.65+294344.0? , 2008, 0804.4585.

[134]  A. Bolton,et al.  The Sloan Lens ACS Survey. VI. Discovery and Analysis of a Double Einstein Ring , 2008, 0801.1555.

[135]  D. Huterer,et al.  Imprints of primordial non-Gaussianities on large-scale structure: Scale-dependent bias and abundance of virialized objects , 2007, 0710.4560.

[136]  The HI content of star-forming galaxies at z = 0.24 , 2007, astro-ph/0701668.

[137]  A. Vecchio,et al.  The LISA verification binaries , 2006, astro-ph/0605227.

[138]  Matias Zaldarriaga,et al.  Single field consistency relation for the 3-point function , 2004 .

[139]  M. A. Strauss,et al.  A gravitationally lensed quasar with quadruple images separated by 14.62 arcseconds , 2003, Nature.

[140]  J. Maldacena Non-Gaussian features of primordial fluctuations in single field inflationary models , 2002, astro-ph/0210603.

[141]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[142]  M. SubbaRao,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.

[143]  V. Narayanan,et al.  Evidence for Reionization at z ∼ 6: Detection of a Gunn-Peterson Trough in a z = 6.28 Quasar , 2001, astro-ph/0108097.

[144]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[145]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[146]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[147]  Konrad Kuijken,et al.  The mass distribution in the galactic disc – II. Determination of the surface mass density of the galactic disc near the Sun , 1989 .

[148]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[149]  S. Gull,et al.  A test for transverse motions of clusters of galaxies , 1983, Nature.