Toward precision medicine in amyotrophic lateral sclerosis.

Precision medicine is an innovative approach that uses emerging biomedical technologies to deliver optimally targeted and timed interventions, customized to the molecular drivers of an individual's disease. This approach is only just beginning to be considered for treating amyotrophic lateral sclerosis (ALS). The clinical and biological complexities of ALS have hindered development of effective therapeutic strategies. In this review we consider applying the key elements of precision medicine to ALS: phenotypic classification, comprehensive risk assessment, presymptomatic period detection, potential molecular pathways, disease model development, biomarker discovery and molecularly tailored interventions. Together, these would embody a precision medicine approach, which may provide strategies for optimal targeting and timing of efforts to prevent, stop or slow progression of ALS.

[1]  A. Pestronk,et al.  Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein , 2004, Nature Genetics.

[2]  O. Hardiman,et al.  Neuroimage: Clinical Lessons of Als Imaging: Pitfalls and Future Directions — a Critical Review , 2022 .

[3]  Carl D Langefeld,et al.  Age of onset of amyotrophic lateral sclerosis is modulated by a locus on 1p34.1 , 2013, Neurobiology of Aging.

[4]  L. Greensmith,et al.  Rodent models of amyotrophic lateral sclerosis. , 2013, Biochimica et biophysica acta.

[5]  P. Andersen,et al.  Neurofilaments in the diagnosis of motoneuron diseases: a prospective study on 455 patients , 2015, Journal of Neurology, Neurosurgery & Psychiatry.

[6]  K. Xia,et al.  A SIGMAR1 splice-site mutation causes distal hereditary motor neuropathy , 2015, Neurology.

[7]  Sonja W. Scholz,et al.  A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis. , 2009, Human molecular genetics.

[8]  M. Benatar,et al.  Presymptomatic spinal cord neurometabolic findings in SOD1-positive people at risk for familial ALS , 2011, Neurology.

[9]  W. Le,et al.  Autophagy dysregulation in amyotrophic lateral sclerosis , 2012, Journal of the Neurological Sciences.

[10]  J. Morris,et al.  TDP‐43 A315T mutation in familial motor neuron disease , 2008, Annals of neurology.

[11]  Christian Burkhardt,et al.  Tracking motor neuron loss in a set of six muscles in amyotrophic lateral sclerosis using the Motor Unit Number Index (MUNIX): a 15-month longitudinal multicentre trial , 2015, Journal of Neurology, Neurosurgery & Psychiatry.

[12]  Adriano Chiò,et al.  State of play in amyotrophic lateral sclerosis genetics , 2013, Nature Neuroscience.

[13]  R. Ophoff,et al.  A CASE OF ALS-FTD IN A LARGE FALS PEDIGREE WITH A K17I ANG MUTATION , 2009, Neurology.

[14]  E. Génin,et al.  A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. , 2014, Brain : a journal of neurology.

[15]  Kyung‐Jin Min,et al.  Autophagy regulates amyotrophic lateral sclerosis-linked fused in sarcoma-positive stress granules in neurons , 2014, Neurobiology of Aging.

[16]  J. Haines,et al.  Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia , 2011, Nature.

[17]  Gene W. Yeo,et al.  ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43 , 2013, Proceedings of the National Academy of Sciences.

[18]  D. Ito,et al.  Conjoint pathologic cascades mediated by ALS/FTLD-U linked RNA-binding proteins TDP-43 and FUS , 2011, Neurology.

[19]  You-Qiang Song,et al.  Abnormal diffusion tensor in nonsymptomatic familial amyotrophic lateral sclerosis with a causative superoxide dismutase 1 mutation , 2008, Journal of magnetic resonance imaging : JMRI.

[20]  Takeo Kato,et al.  Mutations of optineurin in amyotrophic lateral sclerosis , 2010, Nature.

[21]  A Al-Chalabi,et al.  Lithium in patients with amyotrophic lateral sclerosis (LiCALS): a phase 3 multicentre, randomised, double-blind, placebo-controlled trial , 2013, The Lancet Neurology.

[22]  Gene W. Yeo,et al.  Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration , 2013, Proceedings of the National Academy of Sciences.

[23]  L. Petrucelli,et al.  Targeting RNA Foci in iPSC-Derived Motor Neurons from ALS Patients with a C9ORF72 Repeat Expansion , 2013, Science Translational Medicine.

[24]  M. Turner,et al.  Are neurofilaments heading for the ALS clinic? , 2015, Journal of Neurology, Neurosurgery & Psychiatry.

[25]  J. Ule,et al.  Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. , 2011, Nature neuroscience.

[26]  Brittany N. Lasseigne,et al.  Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways , 2015, Science.

[27]  Li-Huei Tsai,et al.  ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects. , 2014, The Journal of clinical investigation.

[28]  S. Iannaccone,et al.  Spinal Muscular Atrophy: Therapeutic Strategies , 2014, Current Treatment Options in Neurology.

[29]  M. Kiernan,et al.  Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis. , 2008, Brain : a journal of neurology.

[30]  M. Gurney,et al.  Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. , 1994, Science.

[31]  L. H. van den Berg,et al.  Taking a risk: a therapeutic focus on ataxin-2 in amyotrophic lateral sclerosis? , 2014, Trends in molecular medicine.

[32]  S. C. Chafe,et al.  Mutations in the Profilin 1 Gene Cause Familial Amyotrophic Lateral Sclerosis , 2012, Nature.

[33]  S. Pereson,et al.  TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration , 2010, Proceedings of the National Academy of Sciences.

[34]  Michael Sendtner,et al.  Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis , 2011, Nature Reviews Neurology.

[35]  C. E. Pearson,et al.  Repeat Associated Non-ATG Translation Initiation: One DNA, Two Transcripts, Seven Reading Frames, Potentially Nine Toxic Entities! , 2011, PLoS genetics.

[36]  John W Griffin,et al.  DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). , 2004, American journal of human genetics.

[37]  Rudolf Jaenisch,et al.  One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[38]  Nipun A. Mistry,et al.  RNA Toxicity from the ALS/FTD C9ORF72 Expansion Is Mitigated by Antisense Intervention , 2013, Neuron.

[39]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[40]  P. Drapeau,et al.  Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo , 2013, Neurobiology of Disease.

[41]  F. Collins,et al.  A new initiative on precision medicine. , 2015, The New England journal of medicine.

[42]  B. Monia,et al.  Antisense oligonucleotide therapy for neurodegenerative disease. , 2006, The Journal of clinical investigation.

[43]  A. Chiò,et al.  Extensive genetics of ALS , 2012, Neurology.

[44]  P. Andersen,et al.  Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients. , 2011, Human molecular genetics.

[45]  S. Pereson,et al.  A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study , 2012, The Lancet Neurology.

[46]  Ewout J N Groen,et al.  Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis , 2009, Nature Genetics.

[47]  R. Jaenisch,et al.  One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[48]  M. Swash,et al.  Amyotrophic lateral sclerosis: a long preclinical period? , 2014, Journal of Neurology, Neurosurgery & Psychiatry.

[49]  Michael Benatar,et al.  Electrical impedance myography as a biomarker to assess ALS progression , 2012, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[50]  L. Ferrucci,et al.  UNC13A influences survival in Italian amyotrophic lateral sclerosis patients: a population-based study , 2013, Neurobiology of Aging.

[51]  D. Borchelt,et al.  An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria , 1995, Neuron.

[52]  P. Wong,et al.  Susceptibility-weighted MRI in mild traumatic brain injury , 2015, Neurology.

[53]  J. Taylor,et al.  Multisystem proteinopathy , 2015, Neurology.

[54]  T. Gillingwater,et al.  A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. , 2004, American journal of human genetics.

[55]  S. Ajroud‐Driss,et al.  SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. , 2011, Archives of neurology.

[56]  Yusuke Nakamura,et al.  A functional variant in ZNF512B is associated with susceptibility to amyotrophic lateral sclerosis in Japanese. , 2011, Human molecular genetics.

[57]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[58]  A. Chiò,et al.  Epidemiology of ALS in Italy , 2009, Neurology.

[59]  J. McLaurin,et al.  Targeting of Monomer/Misfolded SOD1 as a Therapeutic Strategy for Amyotrophic Lateral Sclerosis , 2012, The Journal of Neuroscience.

[60]  A. Southwell,et al.  Personalized gene silencing therapeutics for Huntington disease , 2014, Clinical genetics.

[61]  R. Miller,et al.  Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). , 2003, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[62]  I. Bozzoni,et al.  ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons , 2015, Disease Models & Mechanisms.

[63]  T. Hortobágyi,et al.  Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion , 2012, Acta Neuropathologica.

[64]  G. Rouleau,et al.  Exome sequencing reveals SPG11 mutations causing juvenile ALS , 2012, Neurobiology of Aging.

[65]  Lorne Zinman,et al.  Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis , 2014, Nature Neuroscience.

[66]  F. Al-Mohanna,et al.  A mutation in sigma‐1 receptor causes juvenile amyotrophic lateral sclerosis , 2011, Annals of neurology.

[67]  Gene W. Yeo,et al.  ALS-causative mutations in FUS/TLS confer gain- and loss-of-function by altered association with SMN and U1-snRNP , 2015, Nature Communications.

[68]  R. Martinez,et al.  A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells , 2013, Molecular and Cellular Neuroscience.

[69]  Mamede de Carvalho,et al.  Motor Unit Number Index (MUNIX): Reference values of five different muscles in healthy subjects from a multi-centre study , 2011, Clinical Neurophysiology.

[70]  Gene W. Yeo,et al.  Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43 , 2011, Nature Neuroscience.

[71]  Frank Baas,et al.  Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis , 2008, Nature Genetics.

[72]  Michael Benatar,et al.  Prion-like domain mutations in hnRNPs cause multisystem proteinopathy and ALS , 2013, Nature.

[73]  M. P. van den Heuvel,et al.  Brain morphologic changes in asymptomatic C9orf72 repeat expansion carriers , 2015, Neurology.

[74]  M. Benatar,et al.  Motor neuron involvement in multisystem proteinopathy , 2013, Neurology.

[75]  Holger Hummerich,et al.  Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia , 2005, Nature Genetics.

[76]  A. Al-Chalabi,et al.  The epidemiology of ALS: a conspiracy of genes, environment and time , 2013, Nature Reviews Neurology.

[77]  W. Le,et al.  MTOR-independent, autophagic enhancer trehalose prolongs motor neuron survival and ameliorates the autophagic flux defect in a mouse model of amyotrophic lateral sclerosis , 2014, Autophagy.

[78]  W. Robberecht,et al.  The phenotypic variability of amyotrophic lateral sclerosis , 2014, Nature Reviews Neurology.

[79]  B. McConkey,et al.  TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis , 2008, Nature Genetics.

[80]  A. Caccamo,et al.  Rapamycin Rescues TDP-43 Mislocalization and the Associated Low Molecular Mass Neurofilament Instability , 2009, The Journal of Biological Chemistry.

[81]  Claire L. Simpson,et al.  Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration , 2008, Human molecular genetics.

[82]  A. Chiò,et al.  Prevalence of SOD1 mutations in the Italian ALS population , 2008, Neurology.

[83]  K. Tsai,et al.  Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43 , 2012, Proceedings of the National Academy of Sciences.

[84]  G. Nicholson,et al.  Detection of preclinical motor neurone loss in SOD1 mutation carriers using motor unit number estimation , 2002, Journal of neurology, neurosurgery, and psychiatry.

[85]  M. Thun,et al.  Smoking and risk of amyotrophic lateral sclerosis: a pooled analysis of 5 prospective cohorts. , 2011, Archives of neurology.

[86]  C. Cheroni,et al.  Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: Implication for protein aggregation and immune response , 2012, Progress in Neurobiology.

[87]  B. Dubois,et al.  Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2 , 2011, Neurology.

[88]  Robert H. Brown,et al.  Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. , 2010, Human molecular genetics.

[89]  A. Farmer,et al.  Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study , 2010, The Lancet Neurology.

[90]  Wim Robberecht,et al.  The changing scene of amyotrophic lateral sclerosis , 2013, Nature Reviews Neuroscience.

[91]  Patrizia Sola,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2011, Neuron.

[92]  Kevin F. Bieniek,et al.  C9ORF72 repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits , 2015, Science.

[93]  S. Cronin,et al.  Ethnic variation in the incidence of ALS , 2007, Neurology.

[94]  M. Morita,et al.  ZNF512B gene is a prognostic factor in patients with amyotrophic lateral sclerosis , 2013, Journal of the Neurological Sciences.

[95]  D. Borchelt,et al.  ALS-Linked SOD1 Mutant G85R Mediates Damage to Astrocytes and Promotes Rapidly Progressive Disease with SOD1-Containing Inclusions , 1997, Neuron.

[96]  Robert H. Brown,et al.  Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. , 2009, American journal of human genetics.

[97]  A. Pestronk,et al.  An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study , 2013, The Lancet Neurology.

[98]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[99]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[100]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[101]  S. Ennis,et al.  ANG mutations segregate with familial and 'sporadic' amyotrophic lateral sclerosis , 2006, Nature Genetics.

[102]  E. Buratti,et al.  Targeting RNA Binding Proteins Involved in Neurodegeneration , 2013, Journal of biomolecular screening.

[103]  T. Montine,et al.  Precision medicine: Clarity for the clinical and biological complexity of Alzheimer’s and Parkinson’s diseases , 2015, The Journal of experimental medicine.

[104]  J. Collinge,et al.  ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B) , 2006, Neurology.

[105]  J. Hodges,et al.  FTD and ALS—translating mouse studies into clinical trials , 2015, Nature Reviews Neurology.

[106]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[107]  John Q. Trojanowski,et al.  Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS , 2010, Nature.

[108]  Martin R. Turner,et al.  Biomarkers in amyotrophic lateral sclerosis: opportunities and limitations , 2011, Nature Reviews Neurology.

[109]  Michael Benatar,et al.  Electrical impedance myography correlates with standard measures of Als severity , 2014, Muscle & nerve.

[110]  E. Beghi,et al.  Incidence of amyotrophic lateral sclerosis in Europe , 2009, Journal of Neurology, Neurosurgery & Psychiatry.

[111]  Anders Fuglsang-Frederiksen,et al.  MUNIX and incremental stimulation MUNE in ALS patients and control subjects , 2013, Clinical Neurophysiology.

[112]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[113]  C. Hetz,et al.  Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons , 2013, Autophagy.