Smooth Nonparametric Copula Estimation with Least Squares Support Vector Regression

Copula has become the standard tool in dependence modeling. With the aide of copula, the estimation of multivariate distributions can be obtained by two steps: marginal distributions construction and copula estimation. This paper puts forward a smooth nonparametric copula estimation based on least squares support vector regression. By supplementing the classical least squares support vector regression with some additional shape-related constraints, this method tries to make the estimator satisfy three shape restrictions of copula: grounded, marginal and 2-increasing. Its training involves a simple convex quadratic programming problem, which can be solved in polynomial time. Experimental results clearly showed that this method could achieve significantly better performance than the classical least squares support vector regression and kernel smoother for copula estimation.

[1]  P. Hall,et al.  NONPARAMETRIC KERNEL REGRESSION SUBJECT TO MONOTONICITY CONSTRAINTS , 2001 .

[2]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[3]  Johan A. K. Suykens,et al.  Least squares support vector machines for classification and nonlinear modelling , 2000 .

[4]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[5]  David X. Li On Default Correlation: A Copula Function Approach , 1999 .

[6]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[7]  E. Luciano,et al.  Copula Methods in Finance: Cherubini/Copula , 2004 .

[8]  David X. Li On Default Correlation , 2000 .

[9]  A. Fielding,et al.  Statistical Inference Under Order Restrictions. The Theory and Application of Isotonic Regression , 1974 .

[10]  F. T. Wright,et al.  Advances in Order Restricted Statistical Inference , 1986 .

[11]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[12]  Clélia M. Toloi,et al.  Wavelet-Smoothed Empirical Copula Estimators , 2010 .

[13]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[14]  Erwan Le Pennec,et al.  Thresholding methods to estimate copula density , 2008, J. Multivar. Anal..

[15]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[16]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .

[17]  Ji Zhu,et al.  Quantile Regression in Reproducing Kernel Hilbert Spaces , 2007 .

[18]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[19]  H. D. Brunk,et al.  Statistical inference under order restrictions : the theory and application of isotonic regression , 1973 .

[20]  Philippe Lambert,et al.  Archimedean copula estimation using Bayesian splines smoothing techniques , 2007, Comput. Stat. Data Anal..

[21]  Alexander J. Smola,et al.  Nonparametric Quantile Estimation , 2006, J. Mach. Learn. Res..

[22]  T. Louis,et al.  Inferences on the association parameter in copula models for bivariate survival data. , 1995, Biometrics.

[23]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[24]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[25]  Yunmin Zhu,et al.  Linear B-spline copulas with applications to nonparametric estimation of copulas , 2008, Comput. Stat. Data Anal..

[26]  Alexander J. Smola,et al.  Support Vector Regression Machines , 1996, NIPS.

[27]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[28]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[29]  Spiridon I. Penev,et al.  GeD spline estimation of multivariate Archimedean copulas , 2008, Comput. Stat. Data Anal..

[30]  O. Scaillet,et al.  Nonparametric Estimation of Copulas for Time Series , 2002 .

[31]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .

[32]  Paul Deheuvels,et al.  Non parametric tests of independence , 1980 .

[33]  Christian Genest,et al.  Estimating copula densities through wavelets , 2009 .

[34]  E. Luciano,et al.  Copula methods in finance , 2004 .

[35]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .