The maturation of the traveling-wave delay in the human cochlea was investigated in 227 subjects ranging in age from 29 weeks conceptional age to 49 years by using frequency specific auditory brain-stem responses (ABRs). The derived response technique was applied to ABRs obtained with click stimuli (presented at a fixed level equal to 60-dB sensation level in normal hearing adults) in the presence of high-pass noise masking (slope 96 dB/oct) to obtain frequency specific responses from octave-wide bands. The estimate of traveling-wave delay was obtained by taking the difference between wave I latencies from adjacent derived bands. It was found that the traveling-wave delay between the octave band with center frequency (CF) of 11.3 kHz and that with CF of 5.7 kHz decreased (about 0.4 ms on average) in exponential fashion with age to reach adult values at 3-6 months of age. This decrease was in agreement with reported data in kitten auditory-nerve fibers. The traveling-wave delays between adjacent octave bands with successive lower CF did not change with age.