Likelihood-free inference in high dimensions with synthetic likelihood

One popular approach to likelihood-free inference is the synthetic likelihood method, which assumes that some data summary statistics which are informative about model parameters are approximately Gaussian for each value of the parameter. Based on this assumption, a Gaussian likelihood can be constructed, where the mean and covariance matrix of the summary statistics are estimated via Monte Carlo. The objective of the current work is to improve on a variational Bayes implementation of the synthetic likelihood introduced recently in the literature, to enable the application of that approach to high-dimensional problems. Here high-dimensional can mean problems with more than one hundred parameters. The improvements introduced relate to shrinkage estimation of covariance matrices in estimation of the synthetic likelihood, improved implementation of control variate approaches to stochastic gradient variance reduction, and parsimonious but expressive parametrizations of variational normal posterior covariance matrices in terms of factor structures to reduce the dimension of the optimization problem. The shrinkage covariance estimation is particularly important for stability of stochastic gradient optimization with noisy likelihood estimates. However, as the dimension increases, the quality of the posterior approximation deteriorates unless the number of Monte Carlo samples used to estimate the synthetic likelihood also increases. We explore the properties of the method in some real examples in cases where either the number of summary statistics, the number of model parameters, or both, are large.

[1]  Helen MacGillivray,et al.  Weighted quantile-based estimation for a class of transformation distributions , 2002 .

[2]  Christopher C. Drovandi,et al.  Variational Bayes with synthetic likelihood , 2016, Statistics and Computing.

[3]  D. Nott,et al.  Gaussian Variational Approximation With a Factor Covariance Structure , 2017, Journal of Computational and Graphical Statistics.

[4]  R. Kohn,et al.  Regression Density Estimation With Variational Methods and Stochastic Approximation , 2012 .

[5]  Michael U. Gutmann,et al.  Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models , 2015, J. Mach. Learn. Res..

[6]  H. Robbins A Stochastic Approximation Method , 1951 .

[7]  Anthony N. Pettitt,et al.  Likelihood-free Bayesian estimation of multivariate quantile distributions , 2011, Comput. Stat. Data Anal..

[8]  Charles M. Bishop,et al.  Variational Message Passing , 2005, J. Mach. Learn. Res..

[9]  M. Wand,et al.  Explaining Variational Approximations , 2010 .

[10]  Matteo Fasiolo,et al.  A comparison of inferential methods for highly nonlinear state space models in ecology and epidemiology , 2014 .

[11]  Douglas M. Bates,et al.  Unconstrained parametrizations for variance-covariance matrices , 1996, Stat. Comput..

[12]  David J. Nott,et al.  Variational Bayes With Intractable Likelihood , 2015, 1503.08621.

[13]  Sean Gerrish,et al.  Black Box Variational Inference , 2013, AISTATS.

[14]  Hagai Attias,et al.  Inferring Parameters and Structure of Latent Variable Models by Variational Bayes , 1999, UAI.

[15]  Chong Wang,et al.  An Adaptive Learning Rate for Stochastic Variational Inference , 2013, ICML.

[16]  Michael I. Jordan,et al.  Variational Bayesian Inference with Stochastic Search , 2012, ICML.

[17]  J. Geweke,et al.  Measuring the pricing error of the arbitrage pricing theory , 1996 .

[18]  Shuangzhe Liu,et al.  Statistical properties of the Hadamard product of random vectors , 2001 .

[19]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[20]  Miguel Lázaro-Gredilla,et al.  Local Expectation Gradients for Black Box Variational Inference , 2015, NIPS.

[21]  Richard Wilkinson,et al.  Accelerating ABC methods using Gaussian processes , 2014, AISTATS.

[22]  S. Wood Statistical inference for noisy nonlinear ecological dynamic systems , 2010, Nature.

[23]  Harrison H. Zhou,et al.  Estimating structured high-dimensional covariance and precision matrices: Optimal rates and adaptive estimation , 2016 .

[24]  Xiao-Li Meng,et al.  POSTERIOR PREDICTIVE ASSESSMENT OF MODEL FITNESS VIA REALIZED DISCREPANCIES , 1996 .

[25]  R. A. Fisher,et al.  Statistical Tables for Biological, Agricultural and Medical Research , 1956 .

[26]  Christopher C. Drovandi,et al.  Pre-processing for approximate Bayesian computation in image analysis , 2015, Stat. Comput..

[27]  David I. Warton,et al.  Penalized Normal Likelihood and Ridge Regularization of Correlation and Covariance Matrices , 2008 .

[28]  Gareth W. Peters,et al.  Bayesian Inference, Monte Carlo Sampling and Operational Risk. , 2006 .

[29]  Michael I. Jordan,et al.  An Introduction to Variational Methods for Graphical Models , 1999, Machine Learning.

[30]  Tim Salimans,et al.  Fixed-Form Variational Posterior Approximation through Stochastic Linear Regression , 2012, ArXiv.

[31]  Scott A. Sisson,et al.  Extending approximate Bayesian computation methods to high dimensions via a Gaussian copula model , 2015, 1504.04093.

[32]  Ingram Olkin,et al.  Unbiased Estimation of Some Multivariate Probability Densities and Related Functions , 1969 .

[33]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[34]  Léon Bottou,et al.  Large-Scale Machine Learning with Stochastic Gradient Descent , 2010, COMPSTAT.

[35]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[36]  A. Doucet,et al.  Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator , 2012, 1210.1871.

[37]  Robert Leenders,et al.  Hamiltonian ABC , 2015, UAI.

[38]  David T. Frazier,et al.  Bayesian Synthetic Likelihood , 2017, 2305.05120.

[39]  S. Sisson,et al.  A comparative review of dimension reduction methods in approximate Bayesian computation , 2012, 1202.3819.

[40]  Daan Wierstra,et al.  Stochastic Backpropagation and Approximate Inference in Deep Generative Models , 2014, ICML.

[41]  Max Welling,et al.  GPS-ABC: Gaussian Process Surrogate Approximate Bayesian Computation , 2014, UAI.

[42]  David Allingham,et al.  Bayesian estimation of quantile distributions , 2009, Stat. Comput..

[43]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[44]  M. Beaumont Estimation of population growth or decline in genetically monitored populations. , 2003, Genetics.