Nonlinear analysis of an axisymmetric shell using three noded degenerated isoparametric shell elements

Abstract An updated Lagrangian formulation of a quadratic degenerated isoparametric shell element is presented for geometrically nonlinear elasto-plastic shell problems. A finite rotation effect is included in the formulation by adopting a co-rotational scheme. The load stiffness matrix has been derived for the treatment of a pressure load. For elasto-plastic behavior, the layered element model is used. The Newton-Raphson iteration method is employed to solve incremental nonlinear equations. For tracking of post-buckling behavior, the work control method is taken into account. Verification of the present technique is obtained by analyzing the available reference problems. Good correlations between the computed results and referenced data can be drawn.

[1]  Thomas J. R. Hughes,et al.  A simple and efficient finite element for plate bending , 1977 .

[2]  Geir Horrigmoe,et al.  Finite element instability analysis of free-form shells , 1977 .

[3]  H. D. Hibbit Some follower forces and load stiffness , 1979 .

[4]  L. Kachanov,et al.  Foundations Of The Theory Of Plasticity , 1971 .

[5]  J. Oden Finite Elements of Nonlinear Continua , 1971 .

[6]  H. Hibbitt,et al.  A finite element formulation for problems of large strain and large displacement , 1970 .

[7]  E. Hinton,et al.  A study of quadrilateral plate bending elements with ‘reduced’ integration , 1978 .

[8]  D. Owen,et al.  Finite element software for plates and shells , 1984 .

[9]  K. Bathe,et al.  FINITE ELEMENT FORMULATIONS FOR LARGE DEFORMATION DYNAMIC ANALYSIS , 1975 .

[10]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[11]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[12]  A. Kalnins,et al.  Thin elastic shells , 1967 .

[13]  Karan S. Surana,et al.  Geometrically nonlinear formulation for the axisymmetric shell elements , 1982 .

[14]  O. C. Zienkiewicz,et al.  A simple and efficient element for axisymmetric shells , 1977 .

[15]  E. Hinton,et al.  Finite element analysis of geometrically nonlinear plate behaviour using a mindlin formulation , 1980 .

[16]  Uri Tsach Locking of thin plate/shell elements , 1981 .

[17]  R. Hill The mathematical theory of plasticity , 1950 .

[18]  R. D. Wood,et al.  GEOMETRICALLY NONLINEAR FINITE ELEMENT ANALYSIS OF BEAMS, FRAMES, ARCHES AND AXISYMMETRIC SHELLS , 1977 .

[19]  T. E. Reynolds,et al.  Buckling of pressure loaded rings and shells by the finite element method , 1977 .

[20]  I. Cormeau,et al.  Elastoplastic thick shell analysis by viscoplastic solid finite elements , 1978 .

[21]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[22]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[23]  Klaus-Jürgen Bathe,et al.  Some practical procedures for the solution of nonlinear finite element equations , 1980 .

[24]  Mohamed S. Gadala,et al.  Formulation methods of geometric and material nonlinearity problems , 1984 .

[25]  J. Z. Zhu,et al.  The finite element method , 1977 .

[26]  U. Hindenlang,et al.  Natural description of large inelastic deformations for shells of arbitrary shape-application of trump element , 1980 .

[27]  Ray W. Clough,et al.  Improved numerical integration of thick shell finite elements , 1971 .

[28]  R. Slater Engineering plasticity : theory and application to metal forming processes , 1977 .

[29]  D. Owen,et al.  Finite elements in plasticity : theory and practice , 1980 .

[30]  E. Hinton,et al.  Reduced integration, function smoothing and non-conformity in finite element analysis (with special reference to thick plates) , 1976 .

[31]  H. Parisch Large displacements of shells including material nonlinearities , 1981 .

[32]  K. Surana Geometrically nonlinear formulation for the curved shell elements , 1983 .