Determining Amino Acid Chirality in the Supernova Neutrino Processing Model

Los Alamos National Laboratory, Los Alamos, NM 87545, USA;E-Mail: katrina.koehler@gmail.com* Author to whom correspondence should be addressed; E-Mail: michael.famiano@gmail.com;Tel.: +1-608-425-0767.External Editor: Victor BorovkovReceived: 19 July 2014; in revised form: 14 October 2014 / Accepted: 27 October 2014 /Published: 3 November 2014Abstract: A model is described that can be used to estimate the bulk polarization of largerotating meteoroids in the magnetic field of a neutron star. The results of this model areapplicable to the Supernova Neutrino Amino Acid Processing model, which describes onepossible way in which the amino acids, known in nearly all cases to exhibit supramolecularchirality, could have become enantiomeric.Keywords: amino acids; chirality; neutrinos; weak interaction

[1]  Víctor M. Pérez-García,et al.  Theory of the stability of the quantum chiral state , 1992 .

[2]  F. Frank,et al.  On spontaneous asymmetric synthesis. , 1953, Biochimica et biophysica acta.

[3]  Pedro Bargueño,et al.  The Role of Supernova Neutrinos on Molecular Homochirality , 2006, Origins of Life and Evolution of Biospheres.

[4]  Meir Shinitzky,et al.  Ortho-para spin isomers of the protons in the methylene group--possible implications for protein structure. , 2006, Chirality.

[5]  H. Primakoff,et al.  Chirality of electrons from beta-decay and the left-handed asymmetry of proteins , 2004, Origins of life.

[6]  Laurent Nahon,et al.  Photochirogenesis: Photochemical Models on the Origin of Biomolecular Homochirality , 2010, Symmetry.

[7]  Menard,et al.  Circular polarization in star- formation regions: implications for biomolecular homochirality , 1998, Science.

[8]  J. Oro,et al.  On the reported optical activity of amino acids in the Murchison meteorite , 1983, Nature.

[9]  K. Kvenvolden,et al.  Evidence for Extraterrestrial Amino-acids and Hydrocarbons in the Murchison Meteorite , 1970, Nature.

[10]  Stephen F. Mason,et al.  Origins of biomolecular handedness , 1984, Nature.

[11]  Hiroshi Iwamura,et al.  Amplification of enantiomeric excess in a proline-mediated reaction. , 2004, Angewandte Chemie.

[12]  S. Pizzarello,et al.  Enantiomeric Excesses in Meteoritic Amino Acids , 1997, Science.

[13]  Rhonda M. Stroud,et al.  Origin and Evolution of Prebiotic Organic Matter As Inferred from the Tagish Lake Meteorite , 2011, Science.

[14]  Scott A. Sandford,et al.  The Photostability of Amino Acids in Space , 2001 .

[15]  S. V. Berdyugina,et al.  Zeeman effect and diagnostics of solar and stellar magnetic fields I . Theoretical spectral patterns in the Zeeman regime , 2008 .

[16]  Y. Qian,et al.  Neutrino Transport in Strongly Magnetized Proto-Neutron Stars and the Origin of Pulsar Kicks: The Effect of Asymmetric Magnetic Field Topology , 1998, astro-ph/9802345.

[17]  Martin Quack,et al.  How important is parity violation for molecular and biomolecular chirality? , 2002, Angewandte Chemie.

[18]  Richard N. Boyd,et al.  An Introduction to Nuclear Astrophysics , 2008 .

[19]  John Stillwell,et al.  Symmetry , 2000, Am. Math. Mon..

[20]  Kenso Soai,et al.  Asymmetric autocatalysis and amplification of enantiomeric excess of a chiral molecule , 1995, Nature.

[21]  Jun-ichi Takahashi,et al.  Chirality Emergence in Thin Solid Films of Amino Acids by Polarized Light from Synchrotron Radiation and Free Electron Laser , 2009, International journal of molecular sciences.

[22]  Richard N. Boyd Stardust, Supernovae and the Molecules of Life , 2012 .

[23]  S. Pizzarello,et al.  Prebiotic Amino Acids as Asymmetric Catalysts , 2004, Science.

[24]  T. Onaka,et al.  Supernovae and the chirality of the amino acids. , 2010, Astrobiology.

[25]  Gang Li,et al.  Cumulative parity violation in supernovae , 1998 .

[26]  A. D. Buckingham,et al.  Chirality in NMR spectroscopy , 2004 .

[27]  Dong Lai,et al.  Neutrino-Nucleon Interactions in Magnetized Neutron-Star Matter: The Effects of Parity Violation , 1999 .

[28]  T. Onaka,et al.  Stardust, supernovae, neutrinos and the chirality of the amino acids , 2011, 1106.4330.

[29]  V. V. Kuz'min,et al.  Spontaneous breaking of mirror symmetry in nature and the origin of life , 1989 .

[30]  Jun-ichi Takahashi,et al.  Circular dichroism of amino acids in the vacuum-ultraviolet region. , 2010, Angewandte Chemie.

[31]  D. Cline,et al.  Supernova antineutrino interactions cause chiral symmetry breaking and possibly homochiral biomaterials for life. , 2004, Chirality.

[32]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[33]  Antonio Dobado,et al.  Could dark matter or neutrinos discriminate between the enantiomers of a chiral molecule , 2008 .

[34]  Peer Fischer,et al.  Direct chiral discrimination in NMR spectroscopy , 2006 .

[35]  Jeremy Bailey,et al.  Astronomical Sources of Circularly Polarized Light and the Origin of Homochirality , 2001, Origins of life and evolution of the biosphere.

[36]  W. C. Haxton,et al.  Prospects for detecting supernova neutrino flavor oscillations , 1999 .

[37]  Ronald Breslow,et al.  Amplification of enantiomeric concentrations under credible prebiotic conditions , 2006, Proceedings of the National Academy of Sciences.

[38]  Laurence D. Barron,et al.  Chirality and Life , 2008 .

[39]  W. W. Hansen,et al.  Nuclear Induction , 2011 .

[40]  Jianhua Xu,et al.  Results of the Second Stage of the Investigation of the Radiation Mechanism of Chiral Influence (RAMBAS-2 Experiment) , 2008, Origins of Life and Evolution of Biospheres.

[41]  W. Bonner,et al.  The origin and amplification of biomolecular chirality , 2005, Origins of life and evolution of the biosphere.

[42]  Laurent Nahon,et al.  NON-RACEMIC AMINO ACID PRODUCTION BY ULTRAVIOLET IRRADIATION OF ACHIRAL INTERSTELLAR ICE ANALOGS WITH CIRCULARLY POLARIZED LIGHT , 2011 .

[43]  T. Ulbricht,et al.  Attempts to induce optical activity with polarized β-radiation , 1962 .

[44]  Toshitaka Kajino,et al.  Asymmetric neutrino emission from magnetized proto-neutron star matter including hyperons in relativistic mean field theory , 2011 .

[45]  H. Krauch,et al.  Optische Aktivität und die Paritätsverletzung im β-Zerfall , 2004, Naturwissenschaften.

[46]  Kenso Soai,et al.  Asymmetric Autocatalysis and Its Application to Chiral Discrimination , 2003 .

[47]  Daniel P. Glavin,et al.  Enrichment of the amino acid l-isovaline by aqueous alteration on CI and CM meteorite parent bodies , 2009, Proceedings of the National Academy of Sciences.

[48]  Daniel P. Glavin,et al.  The effects of parent body processes on amino acids in carbonaceous chondrites , 2010 .

[49]  Takahashi Junichi,et al.  Asymmetric synthesis of amino acid precursors in interstellar complex organics by circularly polarized light , 2007 .

[50]  G. Tranter,et al.  Parity-violating energy differences between chiral conformations of tetrahydrofuran, a model system for sugars , 1986 .

[51]  John F. Kerridge,et al.  Meteorites and the early solar system , 1988 .

[52]  Uwe Meierhenrich,et al.  ESA Mission ROSETTA Will Probe for Chirality of Cometary Amino Acids , 2001, Origins of life and evolution of the biosphere.

[53]  Svetlana V. Berdyugina,et al.  The molecular Zeeman effect and diagnostics of solar and stellar magnetic fields. III. Theoretical spectral patterns in the Paschen-Back regime , 2002 .

[54]  A. J. MacDermott,et al.  Parity-Violating Energy Shifts of Murchison L-Amino Acids are Consistent with an Electroweak Origin of Meteorite L-Enantiomeric Excesses , 2009, Origins of Life and Evolution of Biospheres.

[55]  G. W. Nelson,et al.  Weak neutral currents and the origin of biomolecular chirality , 2008 .