All-Sputter-Deposited Hf0.5Zr0.5O2 Double-Gate Ferroelectric Thin-Film Transistor With Amorphous Indium–Gallium–Zinc Oxide Channel

Double-gate ferroelectric thin-film transistor (DG-FeTFT) with an amorphous indium–gallium–zinc oxide (<inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-IGZO) channel is demonstrated. DG-FeTFT is composed of all-sputter-deposited thin films and the bottom FeTFT (FeTFT<inline-formula> <tex-math notation="LaTeX">$_{\text {bottom}}{)}$ </tex-math></inline-formula> and top conventional TFT (TFT<inline-formula> <tex-math notation="LaTeX">$_{\text {top}}{)}$ </tex-math></inline-formula> are combined into a single device that shares the <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula>-IGZO channel and source/drain. Through the separation of read (by TFT<inline-formula> <tex-math notation="LaTeX">$_{\text {top}}{)}$ </tex-math></inline-formula> and program/erase (by FeTFT<inline-formula> <tex-math notation="LaTeX">$_{\text {bottom}}{)}$ </tex-math></inline-formula> operations, it is confirmed that wide memory window (MW) of <inline-formula> <tex-math notation="LaTeX">$\sim $ </tex-math></inline-formula>5V is obtained with an MW amplification and read disturbance can be significantly improved. Furthermore, it is verified that faster program/erase speeds are achievable by modulating the gate voltage of TFTtop, leading to the improved endurance characteristics.

[1]  A. Chernikova,et al.  On the Reliability of HZO-Based Ferroelectric Capacitors: The Cases of Ru and TiN Electrodes , 2022, Nanomaterials.

[2]  Sang Yeol Lee,et al.  Effects of change of oxygen vacancy on hysteresis voltage and stability under time-temperature dependence positive bias stress in amorphous SZTO transistors , 2021, Microelectronic Engineering.

[3]  S. Slesazeck,et al.  Ferroelectric transistors with asymmetric double gate for memory window exceeding 12 V and disturb-free read. , 2021, Nanoscale.

[4]  A. Chernikova,et al.  Dynamic imprint recovery as an origin of the pulse width dependence of retention in Hf0.5Zr0.5O2-based capacitors , 2021, Applied Physics Letters.

[5]  K. Han,et al.  Impact of Interlayer and Ferroelectric Materials on Charge Trapping During Endurance Fatigue of FeFET With TiN/HfxZr1-xO2/Interlayer/Si (MFIS) Gate Structure , 2021, IEEE Transactions on Electron Devices.

[6]  L. Larcher,et al.  Mechanism of Retention Degradation after Endurance Cycling of HfO2-based Ferroelectric Transistors , 2021, 2021 Symposium on VLSI Technology.

[7]  C. Hu,et al.  Ferroelectric HfO2 Memory Transistors With High-κ Interfacial Layer and Write Endurance Exceeding 1010 Cycles , 2021, IEEE Electron Device Letters.

[8]  Shawn Sanctis,et al.  A Fully Integrated Ferroelectric Thin‐Film‐Transistor – Influence of Device Scaling on Threshold Voltage Compensation in Displays , 2021, Advanced Electronic Materials.

[9]  Jang‐Sik Lee,et al.  CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory , 2021, Science Advances.

[10]  S. Slesazeck,et al.  Impact of Read Operation on the Performance of HfO2-Based Ferroelectric FETs , 2020, IEEE Electron Device Letters.

[11]  Y. Hao,et al.  Ferroelectric-like Behavior Originating from Oxygen Vacancy Dipoles in Amorphous Film for Non-volatile Memory , 2020, Nanoscale Research Letters.

[12]  G. Gelinck,et al.  Depolarization of multidomain ferroelectric materials , 2019, Nature Communications.

[13]  Shuaizhi Zheng,et al.  Program/Erase Cycling Degradation Mechanism of HfO2-Based FeFET Memory Devices , 2019, IEEE Electron Device Letters.

[14]  Jiyoung Kim,et al.  Ferroelectric Hf0.5Zr0.5O2 Thin Films: A Review of Recent Advances , 2018, JOM.

[15]  K. V. Van Vliet,et al.  Polarizing Oxygen Vacancies in Insulating Metal Oxides under a High Electric Field. , 2017, Physical review letters.

[16]  David-Wei Zhang,et al.  Ferroelectric polarization and defect-dipole switching in an epitaxial (111) BiFeO3 thin film , 2015 .

[17]  S. Slesazeck,et al.  Origin of the endurance degradation in the novel HfO2-based 1T ferroelectric non-volatile memories , 2014, 2014 IEEE International Reliability Physics Symposium.

[18]  V. Lo,et al.  Investigating the effect of oxygen vacancy on the dielectric and electromechanical properties in ferroelectric ceramics , 2008 .

[19]  A. Tagantsev,et al.  Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features , 2001 .

[20]  Hyung-Kyu Lim,et al.  Threshold voltage of thin-film Silicon-on-insulator (SOI) MOSFET's , 1983, IEEE Transactions on Electron Devices.

[21]  C. Jin,et al.  Low-Voltage Operating Ferroelectric FET with Ultrathin IGZO Channel for High-Density Memory Application , 2020, IEEE Journal of the Electron Devices Society.

[22]  Tso-Ping Ma,et al.  A Study of Endurance Issues in HfO2-Based Ferroelectric Field Effect Transistors: Charge Trapping and Trap Generation , 2018, IEEE Electron Device Letters.

[23]  T. Boscke,et al.  Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors , 2011, 2011 International Electron Devices Meeting.