Ferromagnetism in single crystal and nanocomposite Sr(Ti,Fe)O3 epitaxial films

The ferromagnetic properties and electrical leakage current of single-phase SrTi1−xFexO3 (STF) perovskite films are compared for two different samples: a single-crystal film with a (100) orientation, and a ‘doubly oriented’ nanocomposite film consisting of (110)-oriented nanopillars embedded homoepitaxially in a (100)-oriented matrix. The STF films contain mixed valence Fe ions, with a lower average valence state present in the single crystal film. The films are under an in-plane compressive strain, and exhibit an out-of-plane magnetic easy axis due to magnetoelastic effects. The nanopillars in the double-epitaxial STF films act as single ferromagnetic domains, whereas the single-crystal films show a maze-like domain structure. Composition fluctuations seen in single-crystal films are suppressed in the double-epitaxial structure, which has a lower electrical leakage current. First-principles modeling supports a tendency for Fe ions to occupy adjacent sites. The correlations between the valence state and distribution of the Fe ions, the microstructure, and the magnetic and electrical properties provide a general method of tailoring the properties of perovskite films, which have immense technological value in a range of multiferroic, ferromagnetic, optical, spintronic and hybrid devices.

[1]  C. M. Folkman,et al.  Self-assembled oxide nanopillars in epitaxial BaFe2As2 thin films for vortex pinning , 2011 .

[2]  Lei Bi,et al.  Structure, magnetic properties and magnetoelastic anisotropy in epitaxial Sr(Ti1−xCox)O3 films , 2010 .

[3]  C. Ross,et al.  Self-assembled single-phase perovskite nanocomposite thin films. , 2010, Nano letters.

[4]  M. Blamire,et al.  Electrical and magnetic properties of La0.35Sr0.65Ti1−xFexO3 thin films , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  Q. Jia,et al.  Vertical Interface Effect on the Physical Properties of Self‐Assembled Nanocomposite Epitaxial Films , 2009 .

[6]  H. Tuller,et al.  Impedance study of SrTi1−xFexO3−δ (x = 0.05 to 0.80) mixed ionic-electronic conducting model cathode , 2009 .

[7]  A. Hamzić,et al.  Controlling high-mobility conduction in SrTiO3 by oxide thin film deposition , 2009 .

[8]  Caroline A. Ross,et al.  Magnetic and magneto-optical properties of Fe-doped SrTiO3 films , 2008 .

[9]  O. Eriksson,et al.  Electronic structure and chemical and magnetic interactions in ZnO doped with Co and Al : Experiments and ab initio density-functional calculations , 2008 .

[10]  Lei Bi,et al.  Structure, magnetic and optical properties, and Hall effect of Co- and Fe-doped SnO2 films , 2008 .

[11]  E. Fullerton,et al.  Antiferromagnetic LaFeO3 thin films and their effect on exchange bias , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[12]  Quanxi Jia,et al.  Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. , 2008, Nature materials.

[13]  Yuanhua Lin,et al.  Magnetic behavior and thickness dependence in Co-doped BaTiO3 thin films , 2008 .

[14]  H. Tsuda,et al.  Valence state and spatial distribution of Fe ions in ferromagnetic Ba(Fe1-xZrx)O3-δ single-crystal films on SrTiO3 substrates , 2008 .

[15]  V. Laukhin,et al.  Elastic and orbital effects on thickness-dependent properties of manganite thin films , 2007, 0708.3602.

[16]  S. Venkatesan,et al.  Smallest 90° domains in epitaxial ferroelectric films , 2007, 0706.2487.

[17]  Y. Bando,et al.  Origin and control of high-temperature ferromagnetism in semiconductors. , 2007, Nature materials.

[18]  I. Jones,et al.  Microstructure of homoepitaxial strontium titanate films grown by pulsed laser deposition , 2006 .

[19]  C. Kisielowski,et al.  Structure and interface chemistry of perovskite-spinel nanocomposite thin films , 2006 .

[20]  C. Cho,et al.  Intrinsic ferromagnetic properties of Ti0.94Fe0.06O2∕Ti0.94Mn0.06O2 superlattice films for dilute magnetic semiconductor applications , 2006 .

[21]  Ramamoorthy Ramesh,et al.  Self‐Assembled Growth of BiFeO3–CoFe2O4 Nanostructures , 2006 .

[22]  Tomasz Dietl,et al.  Self-organized growth controlled by charge states of magnetic impurities , 2006, Nature materials.

[23]  P. Dederichs,et al.  Ab initio study of spinodal decomposition in (Zn, Cr)Te , 2006 .

[24]  Tae-Soon Yun,et al.  Orientation effect on microwave dielectric properties of Si-integrated Ba0.6Sr0.4TiO3 thin films for frequency agile devices , 2006 .

[25]  A. Freeman,et al.  Defect compensation, clustering, and magnetism in Cr-doped anatase Ti O 2 , 2006 .

[26]  Elizabeth K. Reilly,et al.  Electric field-induced magnetization switching in epitaxial columnar nanostructures. , 2005, Nano letters.

[27]  Scott J. Litzelman,et al.  The electrical properties and stability of SrTi0.65Fe0.35O3−δ thin films for automotive oxygen sensor applications , 2005 .

[28]  M. Blamire,et al.  Comment on "Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures" , 2005, Science.

[29]  A. Tagantsev,et al.  Room-temperature ferroelectricity in strained SrTiO3 , 2004, Nature.

[30]  R Ramesh,et al.  Multiferroic BaTiO3-CoFe2O4 Nanostructures , 2004, Science.

[31]  Tomoaki Yamada,et al.  Epitaxial growth of SrTiO3 films on CeO2/yttria-stabilized zirconia/Si(001) with TiO2 atomic layer by pulsed-laser deposition , 2003 .

[32]  R. Dittmann,et al.  Early self-assembled stages in epitaxial SrRuO3 on LaAlO3 , 2003 .

[33]  V. Tsurkan,et al.  Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1–x:(MgO)x nanocomposite films , 2003, Nature materials.

[34]  N. Wakiya,et al.  Growth Mechanism of SrTiO3 Thin Film on CeO2(001) Surface , 2002 .

[35]  J. Abrantes,et al.  Oxygen stoichiometry of Sr0.97(Ti,Fe)O3−δ materials , 2000 .

[36]  M. Bibes,et al.  Epitaxial growth of magnetoresistive (00h), (0hh), and (hhh) La2/3Sr1/3MnO3 thin films on (001)Si substrates , 1999 .

[37]  M. Varela,et al.  Epitaxial growth of SrTiO_3 (00h), (0hh), and (hhh) thin films on buffered Si(001) , 1998 .

[38]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[39]  C. Eom,et al.  Origin of the ϕ ∼ ±9° peaks in YBa_2Cu_3O_7−δ films grown on cubic zirconia substrates , 1996 .

[40]  Weiss,et al.  Electronic structure of ultrathin ordered iron oxide films grown onto Pt(111). , 1995, Physical review. B, Condensed matter.

[41]  Y. Yoshino,et al.  Effects of buffer layers in epitaxial growth of SrTiO3 thin film on Si(100) , 1995 .

[42]  C. Y. Chen,et al.  Epitaxy of Y-Ba-Cu-O thin films grown on single-crystal MgO , 1990 .

[43]  Mahesh Kumar,et al.  Magnetic and ferroelectric properties of Fe doped SrTiO3-δ films , 2010 .

[44]  V. Valeev,et al.  Magnetic resonance and ferromagnetic behaviour in Fe-implanted SrTiO3 , 2010 .

[45]  A. Kovalevsky,et al.  The stability and mixed conductivity in La and Fe doped SrTiO3 in the search for potential SOFC anode materials , 2001 .

[46]  P. Adler,et al.  Structural Properties, Mössbauer Spectra, and Magnetism of Perovskite‐Type Oxides SrFe1–xTixO3–y , 2000 .