A structured modeling approach for dynamic hybrid fuzzy-first principles models

Hybrid fuzzy-first principles models can be attractive if a complete physical model is difficult to derive. These hybrid models consist of a framework of dynamic mass and energy balances, supplemented with fuzzy submodels describing additional equations, such as mass transformation and transfer rates. In this paper, a structured approach for designing this type of model is presented. The modeling problem is reduced to several simpler problems, which are solved independently: hybrid model structure and subprocess determination, subprocess behavior estimation, identification and integration of the submodels to form the hybrid model. The hybrid model is interpretable and transparent. The approach is illustrated using data from a (simulated) fed-batch bioreactor.

[1]  W. E. Stewart,et al.  Sensitivity analysis of initial value problems with mixed odes and algebraic equations , 1985 .

[2]  T. Coleman,et al.  On the Convergence of Reflective Newton Methods for Large-scale Nonlinear Minimization Subject to Bounds , 1992 .

[3]  Lyle H. Ungar,et al.  A hybrid neural network‐first principles approach to process modeling , 1992 .

[4]  DAVID G. KENDALL,et al.  Introduction to Mathematical Statistics , 1947, Nature.

[5]  Madjid Fathi,et al.  Model-free optimization of fuzzy rule-based systems using evolution strategies , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[6]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[7]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[8]  R. A. Fox,et al.  Introduction to Mathematical Statistics , 1947 .

[9]  B. Roffel,et al.  A new identification method for fuzzy linear models of nonlinear dynamic systems , 1996 .

[10]  M. V. C. Rao,et al.  A tunable fuzzy logic controller for vehicle-active suspension systems , 1997, Fuzzy Sets Syst..

[11]  Donald Gustafson,et al.  Fuzzy clustering with a fuzzy covariance matrix , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[12]  Jean-Michel Renders,et al.  Optimization of fuzzy expert systems using genetic algorithms and neural networks , 1995, IEEE Trans. Fuzzy Syst..

[13]  Mark A. Kramer,et al.  Modeling chemical processes using prior knowledge and neural networks , 1994 .

[14]  Thomas F. Coleman,et al.  On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds , 1994, Math. Program..

[15]  Luis Magdalena,et al.  A Fuzzy logic controller with learning through the evolution of its knowledge base , 1997, Int. J. Approx. Reason..

[16]  Henk B. Verbruggen,et al.  Hybrid model development for fed-batch bioprocesses; combining physical equations with the metabolic network and black-box kinetics ∗ , 1999 .

[17]  Bill Curtis,et al.  Process modeling , 1992, CACM.

[18]  W. Ramirez Process Control and Identification , 1993 .

[19]  T. Kavli ASMO—Dan algorithm for adaptive spline modelling of observation data , 1993 .

[20]  D. Himmelblau,et al.  Optimization of Chemical Processes , 1987 .

[21]  A. de Sam Lazaro,et al.  A fine tuning method for fuzzy logic rule bases , 1994 .

[22]  William L. Luyben,et al.  Process Modeling, Simulation and Control for Chemical Engineers , 1973 .

[23]  Ben H.L. Betlem,et al.  Multiple nonlinear parameter estimation using PI feedbackcontrol , 2001 .

[24]  Oliver Nelles,et al.  LOLIMOT - Lokale, lineare Modelle zur Identifikation nichtlinearer, dynamischer Systeme , 1997 .

[25]  Thomas A. Runkler,et al.  Some issues in system identification using clustering , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[26]  Robert V. Hogg,et al.  Introduction to Mathematical Statistics. , 1966 .

[27]  Thomas Bäck,et al.  EVOLUTIONARY ALGORITHMS FOR FUZZY LOGIC: A BRIEF OVERVIEW , 1995 .

[28]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[29]  Àngela Nebot,et al.  COMBINED QUALITATIVE/QUANTITATIVE SIMULATION MODELS OF CONTINUOUS-TIME PROCESSES USING FUZZY INDUCTIVE REASONING TECHNIQUES , 1996 .

[30]  Björn Sohlberg,et al.  Supervision and control for industrial processes , 1998 .