A structured modeling approach for dynamic hybrid fuzzy-first principles models
暂无分享,去创建一个
Brian Roffel | Ben H.L. Betlem | Pascal F. van Lith | Ben H. L. Betlem | B. Roffel | P. V. Lith | P. F. V. Lith
[1] W. E. Stewart,et al. Sensitivity analysis of initial value problems with mixed odes and algebraic equations , 1985 .
[2] T. Coleman,et al. On the Convergence of Reflective Newton Methods for Large-scale Nonlinear Minimization Subject to Bounds , 1992 .
[3] Lyle H. Ungar,et al. A hybrid neural network‐first principles approach to process modeling , 1992 .
[4] DAVID G. KENDALL,et al. Introduction to Mathematical Statistics , 1947, Nature.
[5] Madjid Fathi,et al. Model-free optimization of fuzzy rule-based systems using evolution strategies , 1997, IEEE Trans. Syst. Man Cybern. Part B.
[6] Jyh-Shing Roger Jang,et al. ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..
[7] Thomas F. Coleman,et al. An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..
[8] R. A. Fox,et al. Introduction to Mathematical Statistics , 1947 .
[9] B. Roffel,et al. A new identification method for fuzzy linear models of nonlinear dynamic systems , 1996 .
[10] M. V. C. Rao,et al. A tunable fuzzy logic controller for vehicle-active suspension systems , 1997, Fuzzy Sets Syst..
[11] Donald Gustafson,et al. Fuzzy clustering with a fuzzy covariance matrix , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.
[12] Jean-Michel Renders,et al. Optimization of fuzzy expert systems using genetic algorithms and neural networks , 1995, IEEE Trans. Fuzzy Syst..
[13] Mark A. Kramer,et al. Modeling chemical processes using prior knowledge and neural networks , 1994 .
[14] Thomas F. Coleman,et al. On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds , 1994, Math. Program..
[15] Luis Magdalena,et al. A Fuzzy logic controller with learning through the evolution of its knowledge base , 1997, Int. J. Approx. Reason..
[16] Henk B. Verbruggen,et al. Hybrid model development for fed-batch bioprocesses; combining physical equations with the metabolic network and black-box kinetics ∗ , 1999 .
[17] Bill Curtis,et al. Process modeling , 1992, CACM.
[18] W. Ramirez. Process Control and Identification , 1993 .
[19] T. Kavli. ASMO—Dan algorithm for adaptive spline modelling of observation data , 1993 .
[20] D. Himmelblau,et al. Optimization of Chemical Processes , 1987 .
[21] A. de Sam Lazaro,et al. A fine tuning method for fuzzy logic rule bases , 1994 .
[22] William L. Luyben,et al. Process Modeling, Simulation and Control for Chemical Engineers , 1973 .
[23] Ben H.L. Betlem,et al. Multiple nonlinear parameter estimation using PI feedbackcontrol , 2001 .
[24] Oliver Nelles,et al. LOLIMOT - Lokale, lineare Modelle zur Identifikation nichtlinearer, dynamischer Systeme , 1997 .
[25] Thomas A. Runkler,et al. Some issues in system identification using clustering , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).
[26] Robert V. Hogg,et al. Introduction to Mathematical Statistics. , 1966 .
[27] Thomas Bäck,et al. EVOLUTIONARY ALGORITHMS FOR FUZZY LOGIC: A BRIEF OVERVIEW , 1995 .
[28] Petre Stoica,et al. Decentralized Control , 2018, The Control Systems Handbook.
[29] Àngela Nebot,et al. COMBINED QUALITATIVE/QUANTITATIVE SIMULATION MODELS OF CONTINUOUS-TIME PROCESSES USING FUZZY INDUCTIVE REASONING TECHNIQUES , 1996 .
[30] Björn Sohlberg,et al. Supervision and control for industrial processes , 1998 .