Generalizations of the trust region problem

The trust region problem requires the global minimum of a general quadratic function subject to an ellipsoidal constraint. The development of algorithms for the solution of this problem has found applications in nonlinear and combinatorial optimization. In this paper we generalize the trust region problem by allowing a general quadratic constraint. The main results are a characterization of the global minimizer of the generalized trust region problem, and the development of an algorithm that finds an approximate global minimizer in a finite number of iterations.

[1]  F. Uhlig A recurring theorem about pairs of quadratic forms and extensions: a survey , 1979 .

[2]  W. Gander Least squares with a quadratic constraint , 1980 .

[3]  David M. author-Gay Computing Optimal Locally Constrained Steps , 1981 .

[4]  D. Sorensen Newton's method with a model trust region modification , 1982 .

[5]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[6]  Jorge J. Moré,et al.  Computing a Trust Region Step , 1983 .

[7]  M GayDavid,et al.  Algorithm 611: Subroutines for Unconstrained Minimization Using a Model/Trust-Region Approach , 1983 .

[8]  Gene H. Golub,et al.  Matrix computations , 1983 .

[9]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[10]  Thomas F. Coleman,et al.  Computing a Trust Region Step for a Penalty Function , 1990, SIAM J. Sci. Comput..

[11]  Ya-Xiang Yuan,et al.  On a subproblem of trust region algorithms for constrained optimization , 1990, Math. Program..

[12]  Y. Ye,et al.  Algorithms for the solution of quadratic knapsack problems , 1991 .

[13]  G. Golub,et al.  Quadratically constrained least squares and quadratic problems , 1991 .

[14]  Mauricio G. C. Resende,et al.  An interior point algorithm to solve computationally difficult set covering problems , 1991, Math. Program..

[15]  Yin Zhang,et al.  Computing a Celis-Dennis-Tapia trust-region step for equality constrained optimization , 1992, Math. Program..

[16]  Yinyu Ye,et al.  On affine scaling algorithms for nonconvex quadratic programming , 1992, Math. Program..