Organizing multivalency in carbohydrate recognition.

The interactions of cell surface carbohydrates as well as of soluble glycoconjugates with their receptor proteins rule fundamental processes in cell biology. One of the supramolecular principles underlying and regulating carbohydrate recognition is multivalency. Many multivalent glycoconjugates have therefore been synthesized to study multivalency effects operative in glycobiology. This review is focused on smaller multivalent structures such as glycoclusters emphasizing carbohydrate-centered and heteromultivalent glycoconjugates. We are discussing primary, secondary and tertiary structural aspects including approaches to organize multivalency.

[1]  M. Matsui,et al.  A new approach to regioselective acylation of polyhydroxy compounds , 1977 .

[2]  S. Hakomori Carbohydrate-to-carbohydrate interaction in basic cell biology: a brief overview. , 2004, Archives of biochemistry and biophysics.

[3]  I. García,et al.  Glyconanoparticles as multifunctional and multimodal carbohydrate systems. , 2013, Chemical Society reviews.

[4]  A. Imberty,et al.  Multivalent glycoconjugates as anti-pathogenic agents. , 2013, Chemical Society reviews.

[5]  F. Tuczek,et al.  Synthesis and surface-spectroscopic characterization of photoisomerizable glyco-SAMs on Au(111). , 2014, Chemistry.

[6]  O. Schwardt,et al.  Trivalent, Gal/GalNAc-containing ligands designed for the asialoglycoprotein receptor. , 2008, Bioorganic & medicinal chemistry.

[7]  J. L. Jiménez Blanco,et al.  Probing carbohydrate-lectin recognition in heterogeneous environments with monodisperse cyclodextrin-based glycoclusters. , 2012, The Journal of organic chemistry.

[8]  W. Turnbull,et al.  Bacterial toxin inhibitors based on multivalent scaffolds. , 2013, Chemical Society reviews.

[9]  P. Seeberger,et al.  Synthesis of carbohydrate-functionalised sequence-defined oligo(amidoamine)s by photochemical thiol-ene coupling in a continuous flow reactor. , 2013, Chemistry.

[10]  S. Flitsch,et al.  Glycoarrays--tools for determining protein-carbohydrate interactions and glycoenzyme specificity. , 2008, Chemical communications.

[11]  C. F. Brewer,et al.  Thermodynamics of multivalent carbohydrate-lectin cross-linking interactions: importance of entropy in the bind and jump mechanism. , 2009, Biochemistry.

[12]  F. Sönnichsen,et al.  Synthesis and Photochromic Properties of Configurationally Varied Azobenzene Glycosides , 2014, ChemistryOpen.

[13]  Hans-Joachim Gabius,et al.  Phenylenediamine-based bivalent glycocyclophanes: synthesis and analysis of the influence of scaffold rigidity and ligand spacing on lectin binding in cell systems with different glycomic profiles. , 2009, Organic & biomolecular chemistry.

[14]  R. Gutiérrez Gallego,et al.  Probing secondary carbohydrate-protein interactions with highly dense cyclodextrin-centered heteroglycoclusters: the heterocluster effect. , 2005, Journal of the American Chemical Society.

[15]  S. Iyer,et al.  Detection of carbohydrate binding proteins using magnetic relaxation switches. , 2010, Analytical chemistry.

[16]  F. Sönnichsen,et al.  Photodimerisation of glycothymidines in solution and in micelles. , 2011, Chemical communications.

[17]  A. Imberty,et al.  Glycomimetics and glycodendrimers as high affinity microbial anti-adhesins. , 2008, Chemistry.

[18]  S. Roseman,et al.  Adhesion of cultured fibroblasts to insoluble analogues of cell-surface carbohydrates. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Vasseur,et al.  Synthesis of a library of fucosylated glycoclusters and determination of their binding toward Pseudomonas aeruginosa lectin B (PA-IIL) using a DNA-based carbohydrate microarray. , 2012, Bioconjugate chemistry.

[20]  Zhong-Jun Li,et al.  Facile synthesis of 1-thio-β-lactoside clusters scaffolded onto p-methoxyphenyl, β-d-galactopyranoside, β-d-glucopyranoside, and lactoside , 2002 .

[21]  R. Lee,et al.  Difference in the binding mode of two mannose-binding proteins: demonstration of a selective minicluster effect. , 1997, Biochemistry.

[22]  P. Seeberger,et al.  Carbohydrate arrays as tools for research and diagnostics. , 2008, Chemical Society reviews.

[23]  S. Flitsch,et al.  Assessing the cluster glycoside effect during the binding of concanavalin A to mannosylated artificial lipid rafts. , 2009, Organic & biomolecular chemistry.

[24]  S. Danishefsky,et al.  Pursuit of optimal carbohydrate-based anticancer vaccines: preparation of a multiantigenic unimolecular glycopeptide containing the Tn, MBr1, and Lewis(y) antigens. , 2001, Journal of the American Chemical Society.

[25]  Jesús Jiménez-Barbero,et al.  From lectin structure to functional glycomics: principles of the sugar code. , 2011, Trends in biochemical sciences.

[26]  N. Sharon,et al.  Lectins: Carbohydrate-Specific Proteins That Mediate Cellular Recognition. , 1998, Chemical reviews.

[27]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[28]  J. Levis,et al.  Cell-type specific and ligand specific enhancement of cellular uptake of oligodeoxynucleoside methylphosphonates covalently linked with a neoglycopeptide, YEE(ah-GalNAc)3. , 1995, Bioconjugate chemistry.

[29]  G. Nienhaus,et al.  Carbohydrate-lectin recognition of sequence-defined heteromultivalent glycooligomers. , 2014, Journal of the American Chemical Society.

[30]  J. Voskuhl,et al.  Multivalent interaction of cyclodextrin vesicles, carbohydrate guests, and lectins: a kinetic investigation. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[31]  V. Wittmann,et al.  Spatial screening of cyclic neoglycopeptides: identification of polyvalent wheat-germ agglutinin ligands. , 2004, Angewandte Chemie.

[32]  N. Berthet,et al.  Multivalent glycocyclopeptides: toward nano-sized glycostructures. , 2015, Carbohydrate research.

[33]  Su Seong Lee,et al.  Tailored chondroitin sulfate glycomimetics via a tunable multivalent scaffold for potentiating NGF/TrkA-induced neurogenesis† †Electronic supplementary information (ESI) available: Detailed synthesis of CS disaccharides including 1H, 13C NMR, and mass data, general peptide synthesis, click reaction , 2014, Chemical science.

[34]  K. Diederichs,et al.  Structural basis of multivalent binding to wheat germ agglutinin. , 2010, Journal of the American Chemical Society.

[35]  C. L. Yuan Synthesis of some cluster glycosides suitable for attachment to proteins or solid matrices , 1978 .

[36]  G. Visser,et al.  Tetra- versus Pentavalent Inhibitors of Cholera Toxin** , 2015, ChemistryOpen.

[37]  F. Sansone,et al.  Multivalent glycocalixarenes for recognition of biological macromolecules: glycocalyx mimics capable of multitasking. , 2013, Chemical Society reviews.

[38]  J. Vasseur,et al.  Synthesis of homo- and heterofunctionalized glycoclusters and binding to Pseudomonas aeruginosa lectins PA-IL and PA-IIL. , 2012, The Journal of organic chemistry.

[39]  S. Ehlers,et al.  Multivalent ligands for the mannose-specific lectin on type 1 fimbriae of Escherichia coli: syntheses and testing of trivalent α-D-mannoside clusters , 1998 .

[40]  G. Whitesides,et al.  Nonstatistical binding of a protein to clustered carbohydrates. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[41]  G. Vergoten,et al.  Importance of topology for glycocluster binding to Pseudomonas aeruginosa and Burkholderia ambifaria bacterial lectins. , 2015, Organic & biomolecular chemistry.

[42]  R. Pieters,et al.  Bridging lectin binding sites by multivalent carbohydrates. , 2013, Chemical Society reviews.

[43]  W. C. Still,et al.  Parallel Synthesis and Screening of a Solid Phase Carbohydrate Library , 1996, Science.

[44]  P. Kitov,et al.  Heterobifunctional multivalent inhibitor-adaptor mediates specific aggregation between Shiga toxin and a pentraxin. , 2005, Organic letters.

[45]  N. Holtzman,et al.  Attachment of thioglycosides to proteins: enhancement of liver membrane binding. , 1976, Biochemistry.

[46]  O. Renaudet,et al.  Chemoselectively template-assembled glycoconjugates as mimics for multivalent presentation of carbohydrates. , 2003, Organic letters.

[47]  R. Pieters,et al.  Potent divalent inhibitors with rigid glucose click spacers for Pseudomonas aeruginosa lectin LecA. , 2012, Chemical communications.

[48]  P. Yu,et al.  Multichromophoric sugar for fluorescence photoswitching , 2014, Beilstein journal of organic chemistry.

[49]  Yue-tao Zhao,et al.  Synthesis of a series of multivalent homo-, and heteroglycosides and their anti-adhesion activities. , 2013, Carbohydrate research.

[50]  Carolyn R. Bertozzi,et al.  Essentials of Glycobiology , 1999 .

[51]  T. Lindhorst,et al.  Oligomannoside mimetics by glycosylation of 'octopus glycosides' and their investigation as inhibitors of type 1 fimbriae-mediated adhesion of Escherichia coli. , 2006, Organic & biomolecular chemistry.

[52]  J Fraser Stoddart,et al.  Design and synthesis of glycodendrimers. , 2002, Journal of biotechnology.

[53]  D. Tirrell,et al.  Chain dynamics in poly(amidoamine) dendrimers: a study of proton NMR relaxation parameters , 1992 .

[54]  Carolyn R. Bertozzi,et al.  Chemical Glycobiology , 2001, Science.

[55]  V. Chandrasekaran,et al.  Synthesis and testing of the first azobenzene mannobioside as photoswitchable ligand for the bacterial lectin FimH , 2013, Beilstein journal of organic chemistry.

[56]  T. Wrodnigg,et al.  Synthesis of AB4-type carbohydrate scaffolds as branching units in the glycosciences. , 2016, Carbohydrate research.

[57]  S. Normark,et al.  Saccharide orientation at the cell surface affects glycolipid receptor function. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[58]  A. Imberty,et al.  Synthesis of multivalent carbohydrate-centered glycoclusters as nanomolar ligands of the bacterial lectin LecA from Pseudomonas aeruginosa. , 2013, Chemistry.

[59]  Cristina Sisu,et al.  Strong Inhibition of Cholera Toxin by Multivalent GM1 Derivatives , 2007, Chembiochem : a European journal of chemical biology.

[60]  J. Vasseur,et al.  5'-Bis-conjugation of oligonucleotides by amidative oxidation and click chemistry. , 2010, The Journal of organic chemistry.

[61]  H. Gabius,et al.  Lectins: Getting Familiar with Translators of the Sugar Code , 2015, Molecules.

[62]  Istvan Toth,et al.  Carbohydrate-based templates for synthetic vaccines and drug delivery , 2001 .

[63]  V. Wittmann Structural investigation of multivalent carbohydrate-protein interactions using synthetic biomolecules. , 2013, Current opinion in chemical biology.

[64]  S. Ehlers,et al.  Cluster Mannosides as Inhibitors of Type 1 Fimbriae-Mediated Adhesion ofEscherichia coli: Pentaerythritol Derivatives as Scaffolds , 2000 .

[65]  T. Lindhorst,et al.  Functionalization of oligosaccharide mimetics and multimerization using squaric diester-mediated coupling. , 2007, Carbohydrate research.

[66]  J. Fréchet,et al.  Solid-phase synthesis of multivalent glycoconjugates on a DNA synthesizer. , 2003, Bioconjugate chemistry.

[67]  Yuan-chuan Lee,et al.  Facile synthesis of a high-affinity ligand for mammalian hepatic lectin containing three terminal N-acetylgalactosamine residues. , 1997, Bioconjugate chemistry.

[68]  T. Lindhorst Artificial Multivalent Sugar Ligands to Understand and Manipulate Carbohydrate-Protein Interactions , 2002 .

[69]  S. Danishefsky,et al.  Prospects for total synthesis: a vision for a totally synthetic vaccine targeting epithelial tumors. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[70]  Ten Feizi,et al.  Oligosaccharide microarrays to decipher the glyco code , 2004, Nature Reviews Molecular Cell Biology.

[71]  T. Lindhorst,et al.  Are multivalent cluster glycosides a means of controlling ligand density of glycoarrays? , 2013, Carbohydrate research.

[72]  T. Lindhorst,et al.  Glycerol and Glycerol Glycol Glycodendrimers , 2003 .

[73]  Ingo B. Aumüller,et al.  Synthesis of functionalized amphiphilic glycoconjugates and glycoclusters , 2006 .

[74]  A. Imberty,et al.  Glycomimetics versus multivalent glycoconjugates for the design of high affinity lectin ligands. , 2015, Chemical reviews.

[75]  M. Matsui,et al.  Regioselective enhancement of the nucleophilicity of hydroxyl groups through trialkylstannylation: a route to partial alkylation of polyhydroxy compounds , 1978 .

[76]  R. Roy,et al.  Efficient and accelerated growth of multifunctional dendrimers using orthogonal thiol-ene and SN2 reactions. , 2014, Chemical communications.

[77]  J. Brask,et al.  Carbopeptides: chemoselective ligation of peptide aldehydes to an aminooxy‐functionalized D‐galactose template , 2000, Journal of peptide science : an official publication of the European Peptide Society.

[78]  N. Winssinger,et al.  DNA display of glycoconjugates to emulate oligomeric interactions of glycans , 2015, Beilstein journal of organic chemistry.

[79]  T. Lindhorst,et al.  Synthesis of carbohydrate-centered oligosaccharide mimetics equipped with a functionalized tether. , 2000, The Journal of organic chemistry.

[80]  J. Vasseur,et al.  Multiplexed binding determination of seven glycoconjugates for Pseudomonas aeruginosa lectin I (PA-IL) using a DNA-based carbohydrate microarray. , 2011, Chemical communications.

[81]  S. Hanessian Preparative carbohydrate chemistry , 1997 .

[82]  G. Newkome,et al.  Chemistry of micelles. 18. Cascade polymers: syntheses and characterization of one-directional arborols based on adamantane , 1991 .

[83]  V. Křen,et al.  Enzymatic glycosylation of multivalent scaffolds. , 2013, Chemical Society reviews.

[84]  P. Maillard,et al.  A strategy for the targeting of photosensitizers. Synthesis, characterization, and photobiological property of porphyrins bearing glycodendrimeric moieties. , 2011, The Journal of organic chemistry.

[85]  T. Dam,et al.  Effects of clustered epitopes in multivalent ligand-receptor interactions. , 2008, Biochemistry.

[86]  N. Sharon,et al.  History of lectins: from hemagglutinins to biological recognition molecules. , 2004, Glycobiology.

[87]  F. Santoyo-González,et al.  Click Multivalent Heterogeneous Neoglycoconjugates – Modular Synthesis and Evaluation of Their Binding Affinities , 2009 .

[88]  M. Delbianco,et al.  Carbohydrates in Supramolecular Chemistry. , 2016, Chemical reviews.

[89]  L. Hartmann,et al.  Sequence-defined glycopolymer segments presenting mannose: synthesis and lectin binding affinity. , 2012, Biomacromolecules.

[90]  B. Shaanan,et al.  Lectin-carbohydrate interactions: different folds, common recognition principles. , 1997, Trends in biochemical sciences.

[91]  L. Wyns,et al.  Study of the structural and dynamic effects in the FimH adhesin upon α-d-heptyl mannose binding. , 2014, Journal of medicinal chemistry.

[92]  Anne Imberty,et al.  Binding sugars: from natural lectins to synthetic receptors and engineered neolectins. , 2013, Chemical Society reviews.

[93]  R. Roy,et al.  How do multivalent glycodendrimers benefit from sulfur chemistry? , 2013, Chemical Society reviews.

[94]  T. Lindhorst,et al.  Synthesis of carbohydrate-scaffolded thymine glycoconjugates to organize multivalency , 2015, Beilstein journal of organic chemistry.

[95]  Jason E Gestwicki,et al.  Synthetic multivalent ligands as probes of signal transduction. , 2006, Angewandte Chemie.

[96]  P. Compain,et al.  Stereoselective Synthesis of Glycosyl Cyanides by TMSOTf‐Mediated Ring Opening of 1,6‐Anhydro Sugars , 2013, European Journal of Organic Chemistry.

[97]  I. Willner,et al.  Photoswitchable binding of substrates to proteins : photoregulated binding of α-D-mannopyranose to concanavalin A modified by a thiophenefulgide dye , 1992 .

[98]  A. Surolia,et al.  Photoswitchable multivalent sugar ligands: synthesis, isomerization, and lectin binding studies of azobenzene-glycopyranoside derivatives. , 2002, Journal of the American Chemical Society.

[99]  R. Roy,et al.  Design and Creativity in Synthesis of Multivalent Neoglycoconjugates , 2010, Advances in Carbohydrate Chemistry and Biochemistry.

[100]  T. Lindhorst,et al.  Multivalent glycomimetics: synthesis of nonavalent mannoside clusters with variation of spacer properties. , 2006, Carbohydrate Research.

[101]  V. Wittmann,et al.  Combinatorial Solid-Phase Synthesis of Multivalent Cyclic Neoglycopeptides. , 2000, Angewandte Chemie.

[102]  H. S. Bennett MORPHOLOGICAL ASPECTS OF EXTRACELLULAR POLYSACCHARIDES , 1963 .

[103]  Dick W. Slaaf,et al.  The endothelial glycocalyx: composition, functions, and visualization , 2007, Pflügers Archiv - European Journal of Physiology.

[104]  J. Vasseur,et al.  Synthesis of mannose and galactose oligonucleotide conjugates by bi-click chemistry. , 2009, The Journal of organic chemistry.

[105]  T. Lindhorst,et al.  Glucose‐Based AB2‐Building Blocks for the Construction of Branched Glycopeptidomimetics , 2000 .

[106]  Yuan-chuan Lee,et al.  Preparation of cluster glycosides ofN-acetylgalactosamine that have subnanomolar binding constants towards the mammalian hepatic Gal/GalNAc-specific receptor , 1987, Glycoconjugate Journal.

[107]  S. Roseman,et al.  Specific adhesion of rat hepatocytes to beta-galactosides linked to polyacrylamide gels. , 1978, The Journal of biological chemistry.

[108]  O. Renaudet,et al.  Multivalent glyco(cyclo)peptides. , 2013, Chemical Society reviews.

[109]  F. Santoyo-González,et al.  Click Multivalent Homogeneous Neoglycoconjugates – Synthesis and Evaluation of Their Binding Affinities , 2009 .

[110]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[111]  J. Voskuhl,et al.  Sugar-decorated sugar vesicles: lectin-carbohydrate recognition at the surface of cyclodextrin vesicles. , 2010, Chemistry.

[112]  N. Jayaraman Multivalent ligand presentation as a central concept to study intricate carbohydrate-protein interactions. , 2009, Chemical Society reviews.

[113]  R. Roy,et al.  Glyconanosynthons as powerful scaffolds and building blocks for the rapid construction of multifaceted, dense and chiral dendrimers. , 2015, Chemical Society reviews.

[114]  Christina Graf,et al.  Multivalency as a chemical organization and action principle. , 2012, Angewandte Chemie.

[115]  A. Imberty,et al.  Biologically Active Heteroglycoclusters Constructed on a Pillar[5]arene‐Containing [2]Rotaxane Scaffold , 2015, Chemistry.

[116]  J. Vasseur,et al.  Hetero‐Click Conjugation of Oligonucleotides with Glycosides Using Bifunctional Phosphoramidites , 2015 .

[117]  S. Ehlers,et al.  Trivalent α-D-mannoside clusters as inhibitors of type-1 fimbriae-mediated adhesion of Escherichia coli: structural variation and biotinylation , 2001 .

[118]  George M Whitesides,et al.  Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.

[119]  J. M. Benito,et al.  Comparative studies on lectin-carbohydrate interactions in low and high density homo- and heteroglycoclusters. , 2010, Organic & biomolecular chemistry.

[120]  Niels Röckendorf,et al.  Glucuronic acid derivatives as branching units for the synthesis of glycopeptide mimetics. , 2004, The Journal of organic chemistry.

[121]  T. Lindhorst,et al.  Trehalose-based octopus glycosides for the synthesis of carbohydrate-centered PAMAM dendrimers and thiourea-bridged glycoclusters. , 2001, Organic letters.

[122]  N. Jayaraman,et al.  Multivalent glycoliposomes and micelles to study carbohydrate-protein and carbohydrate-carbohydrate interactions. , 2013, Chemical Society reviews.

[123]  E. Defrancq,et al.  Glycoclusters on oligonucleotide and PNA scaffolds: synthesis and applications. , 2013, Chemical Society reviews.

[124]  T. Lindhorst,et al.  Octopus glycosides: multivalent molecular platforms for testing carbohydrate recognition and bacterial adhesion. , 2015, Carbohydrate research.

[125]  T. Lindhorst,et al.  Iterative synthesis of spacered glycodendrons as oligomannoside mimetics and evaluation of their antiadhesive properties. , 2007, Chemistry.

[126]  W. Turnbull Multivalent interactions: a hop, skip and jump. , 2011, Nature chemistry.

[127]  K. Barylyuk,et al.  Hexameric supramolecular scaffold orients carbohydrates to sense bacteria. , 2011, Journal of the American Chemical Society.

[128]  A. Marra,et al.  Calixarene and calixresorcarene glycosides: their synthesis and biological applications. , 2010, Chemical reviews.

[129]  S. Hakomori,et al.  Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. , 2008, Biochimica et biophysica acta.

[130]  F. Santoyo-González,et al.  Click multivalent neoglycoconjugates as synthetic activators in cell adhesion and stimulation of monocyte/machrophage cell lines. , 2007, Organic & biomolecular chemistry.

[131]  V. Chandrasekaran,et al.  Sweet switches: azobenzene glycoconjugates synthesized by click chemistry. , 2012, Chemical communications.

[132]  C. Bräuchle,et al.  Switching first contact: photocontrol of E. coli adhesion to human cells. , 2016, Chemical communications.

[133]  M. Köhn,et al.  Functional Evaluation of Carbohydrate‐Centred Glycoclusters by Enzyme‐Linked Lectin Assay: Ligands for Concanavalin A , 2004, Chembiochem : a European journal of chemical biology.

[134]  Amelia Ahmad Khalili,et al.  A Review of Cell Adhesion Studies for Biomedical and Biological Applications , 2015, International journal of molecular sciences.

[135]  D. Tirrell,et al.  Interactions of synthetic polymers with cell membranes and model membrane systems. 11. Glucose-dependent disruption of phospholipid vesicle membranes , 1986 .

[136]  Sung‐Hyun Yang,et al.  Synthesis of multivalent neoglyconjugates of MUC1 by the conjugation of carbohydrate-centered, triazole-linked glycoclusters to MUC1 peptides using click chemistry. , 2012, The Journal of organic chemistry.

[137]  Davy Vanden Broeck,et al.  Vibrio cholerae: cholera toxin. , 2007, The international journal of biochemistry & cell biology.

[138]  D. Appelhans,et al.  Dendritic glycopolymers based on dendritic polyamine scaffolds: view on their synthetic approaches, characteristics and potential for biomedical applications. , 2015, Chemical Society reviews.

[139]  I. Toth,et al.  Convergent synthetic methodology for the construction of self-adjuvanting lipopeptide vaccines using a novel carbohydrate scaffold , 2014, Beilstein journal of organic chemistry.

[140]  A. Terfort,et al.  Switching of bacterial adhesion to a glycosylated surface by reversible reorientation of the carbohydrate ligand. , 2014, Angewandte Chemie.

[141]  F. Sönnichsen,et al.  Synthesis of glycocluster peptides. , 2008, Carbohydrate research.

[142]  S. Warriner,et al.  A Protein-Based Pentavalent Inhibitor of the Cholera Toxin B-Subunit , 2014, Angewandte Chemie.

[143]  O. Renaudet,et al.  A multi-ligation strategy for the synthesis of heterofunctionalized glycosylated scaffolds. , 2015, Chemical communications.

[144]  Molecular dynamics simulations of glycoclusters and glycodendrimers. , 2002, Journal of biotechnology.

[145]  S. Ley,et al.  Assembly of dendritic glycoclusters from monomeric mannose building blocks , 1998 .

[146]  T. Lindhorst,et al.  Bi- and trivalent glycopeptide mannopyranosides as inhibitors of type 1 fimbriae-mediated bacterial adhesion: variation of valency, aglycon and scaffolding. , 2011, Carbohydrate research.

[147]  Michael B. Hall,et al.  Dendritic macromolecules: synthesis of starburst dendrimers , 1986 .

[148]  J. Davies,et al.  Molecular Biology of the Cell , 1983, Bristol Medico-Chirurgical Journal.

[149]  Alexandre M J J Bonvin,et al.  Activity-structure correlations in divergent lectin evolution: fine specificity of chicken galectin CG-14 and computational analysis of flexible ligand docking for CG-14 and the closely related CG-16. , 2007, Glycobiology.

[150]  T. Lindhorst,et al.  Postsynthetic functionalization of glycodendrons at the focal point , 2014, Beilstein journal of organic chemistry.

[151]  C. Ortiz Mellet,et al.  Cyclodextrin-based multivalent glycodisplays: covalent and supramolecular conjugates to assess carbohydrate-protein interactions. , 2013, Chemical Society reviews.

[152]  T. Lindhorst,et al.  Synthesis of octopus glycosides: core molecules for the construction of glycoclusters and carbohydrate-centered dendrimers , 1998 .

[153]  G. Durand,et al.  Propyl-ended hemifluorinated surfactants: synthesis and self-assembling properties. , 2011, The Journal of organic chemistry.

[154]  S. Danishefsky,et al.  On the power of chemical synthesis: Immunological evaluation of models for multiantigenic carbohydrate-based cancer vaccines , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[155]  J. Reymond,et al.  Glycopeptide dendrimers as Pseudomonas aeruginosa biofilm inhibitors. , 2013, Chemical Society reviews.

[156]  B. Ravoo,et al.  Photoresponsive capture and release of lectins in multilamellar complexes. , 2012, Journal of the American Chemical Society.

[157]  H. Möller,et al.  High-affinity multivalent wheat germ agglutinin ligands by one-pot click reaction , 2012, Beilstein journal of organic chemistry.

[158]  Michel Wathier,et al.  Synthèse et étude du comportement en milieu aqueux de tensioactifs gémini glycosylés , 2001 .

[159]  O. Renaudet,et al.  Synthesis of heteroglycoclusters by using orthogonal chemoselective ligations , 2012, Beilstein journal of organic chemistry.

[160]  T. Lindhorst,et al.  A modular approach for the synthesis of oligosaccharide mimetics. , 2001, The Journal of organic chemistry.

[161]  Maureen E. Taylor,et al.  Paradigms for glycan-binding receptors in cell adhesion. , 2007, Current opinion in cell biology.

[162]  S. Flitsch,et al.  Accelerated enzymatic galactosylation of N-acetylglucosaminolipids in lipid microdomains. , 2012, Journal of the American Chemical Society.

[163]  C. Len,et al.  Azobenzenes—synthesis and carbohydrate applications , 2009 .

[164]  E. Toone,et al.  The cluster glycoside effect. , 2002, Chemical reviews.

[165]  A. Surolia,et al.  Photoswitchable cluster glycosides as tools to probe carbohydrate-protein interactions: synthesis and lectin-binding studies of azobenzene containing multivalent sugar ligands. , 2005, Glycobiology.

[166]  T. Lindhorst,et al.  A General Entry into Glycopeptide “Dendrons” , 2000 .

[167]  A. Marra,et al.  Design of Triazole‐Tethered Glycoclusters Exhibiting Three Different Spatial Arrangements and Comparative Study of their Affinities towards PA‐IL and RCA 120 by Using a DNA‐Based Glycoarray , 2009, Chembiochem : a European journal of chemical biology.

[168]  Yuan-chuan Lee,et al.  Carbohydrate-Protein Interactions: Basis of Glycobiology , 1995 .

[169]  J. M. Benito,et al.  Supramolecular control of oligosaccharide-protein interactions: switchable and tunable ligands for concanavalin A based on beta-cyclodextrin. , 2006, Angewandte Chemie.

[170]  R. Roy,et al.  Multivalent glycoconjugate syntheses and applications using aromatic scaffolds. , 2013, Chemical Society reviews.

[171]  R. Read,et al.  Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands , 2000, Nature.

[172]  H. Lönnberg,et al.  Solid-phase synthesis of oligonucleotide glycoconjugates bearing three different glycosyl groups: orthogonally protected bis(hydroxymethyl)-N,N'-bis(3-hydroxypropyl)malondiamide phosphoramidite as key building block. , 2004, The Journal of organic chemistry.