A non-isothermal phase-field model for piezo–ferroelectric materials
暂无分享,去创建一个
[1] Tomáš Roubíček,et al. Rate-Independent Systems , 2015 .
[2] M. Kamlah,et al. Multiscale modeling for ferroelectric materials: a transition from the atomic level to phase-field modeling , 2011 .
[3] Roberta Nibbi,et al. Thermodynamics of non-local materials: extra fluxes and internal powers , 2011, 1104.3000.
[4] Mauro Fabrizio,et al. Ice-water and liquid-vapor phase transitions by a Ginzburg–Landau model , 2008 .
[5] R. Müller,et al. Phase field simulation of domain structures in ferroelectric materials within the context of inhomogeneity evolution , 2007 .
[6] A. Morro,et al. A thermodynamic approach to non-isothermal phase-field evolution in continuum physics , 2006 .
[7] Kaushik Bhattacharya,et al. A computational model of ferroelectric domains. Part I: model formulation and domain switching , 2005 .
[8] Jiashi Yang,et al. An Introduction to the Theory of Piezoelectricity , 2004 .
[9] C. Horgan,et al. Exponential decay of end effects in anti-plane shear for functionally graded piezoelectric materials , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[10] Antonio Arnau,et al. Fundamentals on Piezoelectricity , 2004 .
[11] Chad M. Landis,et al. A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric ceramics , 2002 .
[12] Chad M. Landis,et al. Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics , 2002 .
[13] Alessandra Borrelli,et al. Saint-Venant's Principle for Antiplane Shear Deformations of Linear Piezoelectric Materials , 2002, SIAM J. Appl. Math..
[14] M. Kamlah,et al. Ferroelectric and ferroelastic piezoceramics – modeling of electromechanical hysteresis phenomena , 2001 .
[15] Marc Kamlah,et al. Phenomenological modeling of the non-linear electro-mechanical coupling in ferroelectrics , 1999 .
[16] Boris A. Strukov,et al. Ferroelectric Phenomena in Crystals , 1998 .
[17] M. Gurtin. Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance , 1996 .
[18] Gérard A. Maugin,et al. Continuum Mechanics of Electromagnetic Solids , 1989 .
[19] Gérard A. Maugin,et al. Thermodynamical formulation for coupled electromechanical hysteresis effects. III: Parameter identification , 1989 .
[20] Gérard A. Maugin,et al. Thermodynamical formulation for coupled electromechanical hysteresis effects—I. Basic equations , 1988 .
[21] Gérard A. Maugin,et al. Thermodynamical formulation for coupled electromechanical hysteresis effects—II. Poling of ceramics , 1988 .