A non-isothermal phase-field model for piezo–ferroelectric materials

[1]  Tomáš Roubíček,et al.  Rate-Independent Systems , 2015 .

[2]  M. Kamlah,et al.  Multiscale modeling for ferroelectric materials: a transition from the atomic level to phase-field modeling , 2011 .

[3]  Roberta Nibbi,et al.  Thermodynamics of non-local materials: extra fluxes and internal powers , 2011, 1104.3000.

[4]  Mauro Fabrizio,et al.  Ice-water and liquid-vapor phase transitions by a Ginzburg–Landau model , 2008 .

[5]  R. Müller,et al.  Phase field simulation of domain structures in ferroelectric materials within the context of inhomogeneity evolution , 2007 .

[6]  A. Morro,et al.  A thermodynamic approach to non-isothermal phase-field evolution in continuum physics , 2006 .

[7]  Kaushik Bhattacharya,et al.  A computational model of ferroelectric domains. Part I: model formulation and domain switching , 2005 .

[8]  Jiashi Yang,et al.  An Introduction to the Theory of Piezoelectricity , 2004 .

[9]  C. Horgan,et al.  Exponential decay of end effects in anti-plane shear for functionally graded piezoelectric materials , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  Antonio Arnau,et al.  Fundamentals on Piezoelectricity , 2004 .

[11]  Chad M. Landis,et al.  A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric ceramics , 2002 .

[12]  Chad M. Landis,et al.  Fully coupled, multi-axial, symmetric constitutive laws for polycrystalline ferroelectric ceramics , 2002 .

[13]  Alessandra Borrelli,et al.  Saint-Venant's Principle for Antiplane Shear Deformations of Linear Piezoelectric Materials , 2002, SIAM J. Appl. Math..

[14]  M. Kamlah,et al.  Ferroelectric and ferroelastic piezoceramics – modeling of electromechanical hysteresis phenomena , 2001 .

[15]  Marc Kamlah,et al.  Phenomenological modeling of the non-linear electro-mechanical coupling in ferroelectrics , 1999 .

[16]  Boris A. Strukov,et al.  Ferroelectric Phenomena in Crystals , 1998 .

[17]  M. Gurtin Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance , 1996 .

[18]  Gérard A. Maugin,et al.  Continuum Mechanics of Electromagnetic Solids , 1989 .

[19]  Gérard A. Maugin,et al.  Thermodynamical formulation for coupled electromechanical hysteresis effects. III: Parameter identification , 1989 .

[20]  Gérard A. Maugin,et al.  Thermodynamical formulation for coupled electromechanical hysteresis effects—I. Basic equations , 1988 .

[21]  Gérard A. Maugin,et al.  Thermodynamical formulation for coupled electromechanical hysteresis effects—II. Poling of ceramics , 1988 .