Phylogenomic analysis of transcriptome data elucidates co-occurrence of a paleopolyploid event and the origin of bimodal karyotypes in Agavoideae (Asparagaceae).

PREMISE OF THE STUDY The stability of the bimodal karyotype found in Agave and closely related species has long interested botanists. The origin of the bimodal karyotype has been attributed to allopolyploidy, but this hypothesis has not been tested. Next-generation transcriptome sequence data were used to test whether a paleopolyploid event occurred on the same branch of the Agavoideae phylogenetic tree as the origin of the Yucca-Agave bimodal karyotype. METHODS Illumina RNA-seq data were generated for phylogenetically strategic species in Agavoideae. Paleopolyploidy was inferred in analyses of frequency plots for synonymous substitutions per synonymous site (K(s)) between Hosta, Agave, and Chlorophytum paralogous and orthologous gene pairs. Phylogenies of gene families including paralogous genes for these species and outgroup species were estimated to place inferred paleopolyploid events on a species tree. KEY RESULTS K(s) frequency plots suggested paleopolyploid events in the history of the genera Agave, Hosta, and Chlorophytum. Phylogenetic analyses of gene families estimated from transcriptome data revealed two polyploid events: one predating the last common ancestor of Agave and Hosta and one within the lineage leading to Chlorophytum. CONCLUSIONS We found that polyploidy and the origin of the Yucca-Agave bimodal karyotype co-occur on the same lineage consistent with the hypothesis that the bimodal karyotype is a consequence of allopolyploidy. We discuss this and alternative mechanisms for the formation of the Yucca-Agave bimodal karyotype. More generally, we illustrate how the use of next-generation sequencing technology is a cost-efficient means for assessing genome evolution in nonmodel species.

[1]  K. Gardens The Plant List , 2013 .

[2]  James Leebens-Mack,et al.  Quality and quantity of data recovered from massively parallel sequencing: Examples in Asparagales and Poaceae. , 2012, American journal of botany.

[3]  I. Schubert,et al.  Interpretation of karyotype evolution should consider chromosome structural constraints. , 2011, Trends in genetics : TIG.

[4]  Y. Peer A mystery unveiled , 2011, Genome Biology.

[5]  Claude W. dePamphilis,et al.  Ancestral polyploidy in seed plants and angiosperms , 2011, Nature.

[6]  J. Simpson,et al.  Genomic resources and transcriptome mining in Agave tequilana , 2011 .

[7]  K. Halpin A chloroplast phylogeny of Agavaceae subfamily Chlorogaloideae with a focus on species relationships in Hastingsia , 2011 .

[8]  M. Chase,et al.  Molecular phylogenetics of Ruscaceae sensu lato and related families (Asparagales) based on plastid and nuclear DNA sequences. , 2010, Annals of botany.

[9]  M. Fishbein,et al.  Phylogeny of Camassia (Agavaceae) Inferred from Plastid rpl16 Intron and trnD—trnY—trnE—trnT Intergenic Spacer DNA Sequences: Implications for Species Delimitation , 2010 .

[10]  Michael S. Barker,et al.  Ancient genome duplications during the evolution of kiwifruit (Actinidia) and related Ericales. , 2010, Annals of botany.

[11]  J. Doyle,et al.  Dating the origins of polyploidy events. , 2010, The New phytologist.

[12]  M. Terrasi,et al.  Advances in chromosomal studies in Neottieae (Orchidaceae): constitutive heterochromatin, chromosomal rearrangements and speciation , 2010 .

[13]  Michael S. Barker,et al.  EvoPipes.net: Bioinformatic Tools for Ecological and Evolutionary Genomics , 2010, Evolutionary bioinformatics online.

[14]  K. Wurdack,et al.  The South American genera of Hemerocallidaceae (Eccremis and Pasithea): two introductions to the New World , 2009 .

[15]  Michael S. Barker,et al.  Paleopolyploidy in the Brassicales: Analyses of the Cleome Transcriptome Elucidate the History of Genome Duplications in Arabidopsis and Other Brassicales , 2009, Genome biology and evolution.

[16]  M. Chase,et al.  A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae , 2009 .

[17]  Michael Freeling,et al.  Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. , 2009, Annual review of plant biology.

[18]  Gideon F. Smith,et al.  Phylogenetic relationships in Asphodelaceae ( subfamily Alooideae ) inferred from chloroplast DNA sequences ( rbcL , matK ) and from genomic fingerprinting ( ISSR ) , 2009 .

[19]  David C. Tank,et al.  An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: , 2009 .

[20]  D. Sankoff,et al.  Polyploidy and angiosperm diversification. , 2009, American journal of botany.

[21]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[22]  Jim Leebens-Mack,et al.  Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels , 2010, BMC Evolutionary Biology.

[23]  Marta Matvienko,et al.  Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. , 2008, Molecular biology and evolution.

[24]  A. Leitch,et al.  Wild and agronomically important Agave species (Asparagaceae) show proportional increases in chromosome number, genome size, and genetic markers with increasing ploidy , 2008 .

[25]  A. Hemp,et al.  A taxonomic and ecological analysis of two forest Chlorophytum taxa (Anthericaceae) on Mount Kilimanjaro, Tanzania , 2008, Plant Systematics and Evolution.

[26]  Kai F. Müller,et al.  PlantTribes: a gene and gene family resource for comparative genomics in plants , 2007, Nucleic Acids Res..

[27]  J. Leebens-Mack,et al.  Pattern and timing of diversification in Yucca (Agavaceae): specialized pollination does not escalate rates of diversification , 2008, Proceedings of the Royal Society B: Biological Sciences.

[28]  C. R. Carvalho,et al.  Cytogenetics and Flow Cytometry-based DNA Quantification in Herreria salsaparilha Martius (Herreriaceae): a Medicinal Species , 2007 .

[29]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[30]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[31]  M. Gribskov,et al.  The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray) , 2006, Science.

[32]  Peer Bork,et al.  PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments , 2006, Nucleic Acids Res..

[33]  V. Souza,et al.  Timing and rate of speciation in Agave (Agavaceae). , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[34]  D. Soltis,et al.  Widespread genome duplications throughout the history of flowering plants. , 2006, Genome research.

[35]  Kevin P. Byrne,et al.  Multiple rounds of speciation associated with reciprocal gene loss in polyploid yeasts , 2006, Nature.

[36]  Zhongfu Ni,et al.  Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. , 2006, BioEssays : news and reviews in molecular, cellular and developmental biology.

[37]  Phylogeny of Agavaceae Based on ndhF, rbcL, and its Sequences , 2006 .

[38]  Fay,et al.  Multigene Analyses of Monocot Relationships , 2006 .

[39]  W. Kress,et al.  Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF , 2006 .

[40]  Jerrold I. Davis,et al.  Phylogeny, Genome Size, and Chromosome Evolution of Asparagales , 2006 .

[41]  R. Shoemaker,et al.  Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families. , 2005, Systematic biology.

[42]  R. Horres,et al.  Chromosomal features and evolution of Bromeliaceae , 2005, Plant Systematics and Evolution.

[43]  C. Vosa On chromosome uniformity, bimodality and evolution in the tribe Aloineae (Asphodelaceae) , 2005 .

[44]  O. Crosa SEGUNDA ESPECIE Y JUSTIFICACIN DEL GNERO ZOELLNERALLIUM (ALLIACEAE) , 2004 .

[45]  Jessica A Schlueter,et al.  Mining EST databases to resolve evolutionary events in major crop species. , 2004, Genome.

[46]  L. Lukens,et al.  Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae) , 2004 .

[47]  I. Leitch,et al.  Genome downsizing in polyploid plants , 2004 .

[48]  Guillaume Blanc,et al.  Widespread Paleopolyploidy in Model Plant Species Inferred from Age Distributions of Duplicate Genes , 2004, The Plant Cell Online.

[49]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[50]  M. Chase,et al.  Embryology, cytology and systematics ofHemiphylacus, Asparagus andAnemarrhena (Asparagales) , 1998, Plant Systematics and Evolution.

[51]  S. Bennett,et al.  Genomic in situ hybridization reveals the allopolyploid nature ofMilium montianum (Gramineae) , 1992, Chromosoma.

[52]  B. Stedje Chromosome evolution within theOrnithogalum tenuifolium complex (Hyacinthaceae), with special emphasis on the evolution of bimodal karyotypes , 1989, Plant Systematics and Evolution.

[53]  M. Chase,et al.  MOLECULAR DATA CONFIRM THE PHYLOGENETIC PLACEMENT OF THE ENIGMATIC HESPEROCALLIS (HESPEROCALLIDACEAE) WITH AGAVE , 2004 .

[54]  Jonathan F. Wendel,et al.  Genome evolution in polyploids , 2004, Plant Molecular Biology.

[55]  C. V. Jongeneel,et al.  Modeling sequencing errors by combining Hidden Markov models , 2003, ECCB.

[56]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[57]  A. Tyagi,et al.  Do the different parental 'heteromes' cause genomic shock in newly formed allopolyploids? , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[58]  Gideon F. Smith,et al.  Phylogenetic relationships in Asphodelaceae (subfamily Alooideae) inferred from chloroplast DNA sequences (rbcL, matK) and from genomic fingerprinting (ISSR) , 2003 .

[59]  Apgii An update of the angiosperm phylogeny group classification for the orders and families of flowering plants : APGII , 2003 .

[60]  James K. M. Brown,et al.  Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. , 2002, Genome research.

[61]  Y Van de Peer,et al.  Genome duplication, divergent resolution and speciation. , 2001, Trends in genetics : TIG.

[62]  B. Zonneveld,et al.  Genome Size and Pollen Viability as Taxonomic Criteria: Application to the Genus Hosta , 2001 .

[63]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.

[64]  A. Force,et al.  The probability of duplicate gene preservation by subfunctionalization. , 2000, Genetics.

[65]  Z. Yang,et al.  Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. , 2000, Molecular biology and evolution.

[66]  C. V. Jongeneel,et al.  ESTScan: A Program for Detecting, Evaluating, and Reconstructing Potential Coding Regions in EST Sequences , 1999, ISMB.

[67]  David Peel,et al.  The EMMIX Algorithm for the Fitting of Normal and t-Components , 1999 .

[68]  Peter Adams,et al.  The EMMIX software for the fitting of mixtures of normal and t-components , 1999 .

[69]  P. Brandham,et al.  Genome Size Variation in the Aloaceae, an Angiosperm Family Displaying Karyotypic Orthoselection , 1998 .

[70]  Z. Yang,et al.  Models of amino acid substitution and applications to mitochondrial protein evolution. , 1998, Molecular biology and evolution.

[71]  Z. Yang,et al.  Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. , 1998, Molecular biology and evolution.

[72]  P. Goldblatt,et al.  Chromosome cytology of Iridaceae - patterns of variation, determination of ancestral base numbers, and modes of karyotype change. , 1997 .

[73]  H. A. Orr,et al.  Dobzhansky, Bateson, and the genetics of speciation. , 1996, Genetics.

[74]  B. Simpson,et al.  PHYLOGENY OF AGAVACEAE BASED ON ITS RDNA SEQUENCE VARIATION , 1996 .

[75]  B. Stedje Karyotypes of some species of Hyacinthaceae from Ethiopia and Kenya , 1996 .

[76]  M. Chase,et al.  New Circumscriptions and a New Family of Asparagoid Lilies: Genera Formerly included in Anthericaceae , 1996 .

[77]  P. Lu,et al.  Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[78]  B. Simpson,et al.  A Chloroplast DNA Study of the Agavaceae , 1995 .

[79]  M. Tamura A karyological review of the orders Asparagales and Liliales (Monocotyledonae) , 1995 .

[80]  N. Goldman,et al.  A codon-based model of nucleotide substitution for protein-coding DNA sequences. , 1994, Molecular biology and evolution.

[81]  G. Learn,et al.  The systematic status of the Agavaceae and Nolinaceae and related Asparagales in the Monocotyledons: An analysis based on the rbcL gene sequence , 1994 .

[82]  J. Herrera,et al.  Chromosome numbers and a new model for karyotype evolution in Ruppia L. (Ruppiaceae) , 1993 .

[83]  M. Windham,et al.  A Model for Divergent, Allopatric Speciation of Polyploid Pteridophytes Resulting from Silencing of Duplicate-Gene Expression , 1991, The American Naturalist.

[84]  R. W. Becking,et al.  The generic distinctness of Schoenolirion and Hastingsia , 1991 .

[85]  J. Daviña,et al.  Heterochromatin and genome size in Fortunatia and Camassia (Hyacinthaceae) , 1991 .

[86]  G. Palomino,et al.  Karyotypic Studies in Two Mexican Species of Echeandia Ort. (Liliaceae) , 1988 .

[87]  Prof. Dr. Rolf M. T. Dahlgren,et al.  The Families of the Monocotyledons , 1985, Springer Berlin Heidelberg.

[88]  H. Clifford,et al.  The Families of the Monocotyledons: Structure, Evolution, and Taxonomy , 1985 .

[89]  A. Martínez,et al.  The Chromosomes of Orchids VIII. Spiranthinae and Cranichidinae , 1985 .

[90]  S. Sen Cytotaxonomy of Liliales , 1975 .

[91]  P. Brandham The Chromosomes of the Liliaceae: II: Polyploidy and Karyotype Variation in the Aloineae , 1971 .

[92]  J. B. Smith,et al.  The Chromosomes of the Liliaceae: I: The Karyotypes of Twenty-Five Tropical Species , 1967 .

[93]  J. T. Baldwin,et al.  CYTOGEOGRAPHY OF CHLOROPHYTUM IN LIBERIA , 1951 .

[94]  M. S. Cave SPOROGENESIS AND EMBRYO SAC DEVELOPMENT OF HESPEROCALLIS AND LEUCOCRINUM IN RELATION TO THEIR SYSTEMATIC POSITION , 1948 .

[95]  Elsa Backman Granick A KARYOSYSTEMATIC STUDY OF THE GENUS AGAVE , 1944 .

[96]  F. Gould A Systematic Treatment of the Genus Camassia Lindl. , 1942 .

[97]  D. Sato ANALYSIS OF THE KARYOTYPES IN YUCCA, AGAVE AND THE RELATED GENERA WITH SPECIAL REFERENCE TO THE PHYLOGENETIC SIGNIFICANCE , 1935 .

[98]  T. Akemine Chromosome Studies on Hosta I. The Chromosome Numbers in Various Species of Hosta , 1935 .

[99]  T. Whitaker Chromosome Constitution in Certain Monocotyledons , 1934, Journal of the Arnold Arboretum..

[100]  S. Mckelvey,et al.  Taxonomic and cytological relationships of Yucca and Agave , 1933 .

[101]  W. R. Taylor II. A COMPARISON OF THE CHROMOSOMES OF GASTERIA, ALOË, AND HAWORTHIA , 1925 .

[102]  W. R. Taylor Cytological Studies on Gasteria. II. A Comparison of the Chromosomes of Gasteria, Aloe, and Haworthia , 1925 .