An executable meta-language for inductive definitions with binders

[1]  Frank Pfenning,et al.  System Description: Twelf - A Meta-Logical Framework for Deductive Systems , 1999, CADE.

[2]  Andrew M. Pitts,et al.  Generative unbinding of names , 2007, POPL '07.

[3]  Warren D. Goldfarb,et al.  The Undecidability of the Second-Order Unification Problem , 1981, Theor. Comput. Sci..

[4]  James Cheney,et al.  The Complexity of Equivariant Unification , 2004, ICALP.

[5]  Dale A. Miller,et al.  AN OVERVIEW OF PROLOG , 1988 .

[6]  Zoltan Somogyi,et al.  The Execution Algorithm of Mercury, an Efficient Purely Declarative Logic Programming Language , 1996, J. Log. Program..

[7]  Javier Farreres The Programming Language , 2004 .

[8]  Michael Hanus,et al.  Nondeterminism Analysis of Functional Logic Programs , 2005, ICLP.

[9]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[10]  Andrew M. Pitts,et al.  Operational Semantics and Program Equivalence , 2000, APPSEM.

[11]  Tobias Nipkow,et al.  From Semantics to Computer Science: Nominal verification of algorithm W , 2009 .

[12]  Walid Taha,et al.  Multi-Stage Programming: Its Theory and Applications , 1999 .

[13]  Jordi Levy,et al.  Nominal Unification from a Higher-Order Perspective , 2008, RTA.

[14]  Venkataraman Ramesh,et al.  Research in software engineering: an analysis of the literature , 2002, Inf. Softw. Technol..

[15]  Carolyn L. Talcott,et al.  1 Equivalence in Functional Languages with E ectsIan , 2007 .

[16]  Michael Hanus,et al.  Type-based nondeterminism checking in functional logic programs , 2000, PPDP '00.

[17]  D. Friedman,et al.  α Kanren A Fresh Name in Nominal Logic Programming , 2007 .

[18]  Niklaus Wirth,et al.  On the Design of Programming Languages , 1974, IFIP Congress.

[19]  Andrew M. Pitts,et al.  Resolving Inductive Definitions with Binders in Higher-Order Typed Functional Programming , 2009, ESOP.

[20]  Tom Ridge,et al.  Ott: effective tool support for the working semanticist , 2007, ICFP '07.

[21]  Andrew D. Gordon Operational equivalences for untyped and polymorphic object calculi , 1999 .

[22]  Michael J. Maher,et al.  The Semantics of Constraint Logic Programs , 1998, J. Log. Program..

[23]  Andrew M. Pitts,et al.  A New Approach to Abstract Syntax with Variable Binding , 2002, Formal Aspects of Computing.

[24]  Andrew M. Pitts,et al.  A Metalanguage for Structural Operational Semantics , 2007, Trends in Functional Programming.

[25]  Harry G. Mairson Deciding ML typability is complete for deterministic exponential time , 1989, POPL '90.

[26]  Andrew M. Pitts Alpha-Structural Recursion and Induction , 2005, TPHOLs.

[27]  Andreas Wiethoff,et al.  The Programming Languages C and C , 1993 .

[28]  W Christian Urban,et al.  Nominal Verification of Algorithm W , 2008 .

[29]  Claude Kirchner,et al.  Unification via Explicit Substitutions: The Case of Higher-Order Patterns , 1996, JICSLP.

[30]  Christian Urban,et al.  alpha-Prolog: A Logic Programming Language with Names, Binding and a-Equivalence , 2004, ICLP.

[31]  Barry W. Boehm,et al.  A spiral model of software development and enhancement , 1986, Computer.

[32]  Robert Hieb,et al.  Syntactic abstraction in scheme , 1992, LISP Symb. Comput..

[33]  Robin Milner,et al.  A Theory of Type Polymorphism in Programming , 1978, J. Comput. Syst. Sci..

[34]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[35]  Mark R. Shinwell The fresh approach: functional programming with names and binders , 2005 .

[36]  Sergio Antoy,et al.  Implementing functional logic languages using multiple threads and stores , 2004, ICFP '04.

[37]  Tom Ridge,et al.  The semantics of x86-CC multiprocessor machine code , 2009, POPL '09.

[38]  Julien Signoles,et al.  Designing a Generic Graph Library Using ML Functors , 2007, Trends in Functional Programming.

[39]  Peter Nickolas,et al.  The Qu-Prolog Unification Algorithm: Formalisation and Correctness , 1996, Theor. Comput. Sci..

[40]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[41]  Mike Paterson,et al.  Linear Unification , 1978, J. Comput. Syst. Sci..

[42]  Diomidis Spinellis,et al.  Commercial uses: Going functional on exotic trades , 2009, Journal of Functional Programming.

[43]  Simon L. Peyton Jones,et al.  Imperative functional programming , 1993, POPL '93.

[44]  Christophe Calvès,et al.  Implementing Nominal Unification , 2007, Electron. Notes Theor. Comput. Sci..

[45]  Philip Wadler,et al.  Featherweight Java: a minimal core calculus for Java and GJ , 1999, OOPSLA '99.

[46]  Andrew M. Pitts,et al.  A First Order Theory of Names and Binding , 2001 .

[47]  James Cheney Relating Nominal and Higher-Order Pattern Unification , 2005 .

[48]  Gérard P. Huet,et al.  A Unification Algorithm for Typed lambda-Calculus , 1975, Theor. Comput. Sci..

[49]  J. Cheney,et al.  A sequent calculus for nominal logic , 2004, LICS 2004.

[50]  Matthias Felleisen,et al.  Hygienic macro expansion , 1986, LFP '86.

[51]  Andrew M. Pitts,et al.  Observable Properties of Higher Order Functions that Dynamically Create Local Names, or What's new? , 1993, MFCS.

[52]  Mark R. Shinwell Fresh O'Caml: Nominal Abstract Syntax for the Masses , 2006, Electron. Notes Theor. Comput. Sci..

[53]  Robin Milner,et al.  Communicating and mobile systems - the Pi-calculus , 1999 .

[54]  Christian Urban,et al.  Nominal Inversion Principles , 2008, TPHOLs.

[55]  James McKinna,et al.  Some Lambda Calculus and Type Theory Formalized , 1997, Journal of Automated Reasoning.

[56]  Dale Miller,et al.  A proof theory for generic judgments , 2005, TOCL.

[57]  Tobias Nipkow,et al.  A Proof Assistant for Higher-Order Logic , 2002 .

[58]  Michael Hanus,et al.  Controlling Search in Declarative Programs , 1998, PLILP/ALP.

[59]  Charles Antony Richard Hoare,et al.  Hints on programming language design. , 1973 .

[60]  Matthias Felleisen,et al.  Control operators, the SECD-machine, and the λ-calculus , 1987, Formal Description of Programming Concepts.

[61]  Robin Milner,et al.  Definition of standard ML , 1990 .

[62]  Delia Kesner,et al.  Pure Pattern Calculus , 2006, ESOP.

[63]  Christophe Calvès,et al.  A polynomial nominal unification algorithm , 2008, Theor. Comput. Sci..

[64]  Andrew M. Pitts,et al.  On a monadic semantics for freshness , 2005, Theor. Comput. Sci..

[65]  Stefan Kahrs,et al.  Mistakes and Ambiguities in the definition of Standard ML , 1993 .

[66]  Christian Urban,et al.  Nominal Techniques in Isabelle/HOL , 2005, Journal of Automated Reasoning.

[67]  Michael Hanus,et al.  Encapsulating Non-Determinism in Functional Logic Computations , 2004, J. Funct. Log. Program..

[68]  François Pottier,et al.  Static Name Control for FreshML , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[69]  Matthias Felleisen,et al.  A Visual Environment for Developing Context-Sensitive Term Rewriting Systems , 2004, RTA.

[70]  Davide Sangiorgi,et al.  The Pi-Calculus - a theory of mobile processes , 2001 .

[71]  Michael Hanus A Unified Computation Model for Declarative Programming , 1997, APPIA-GULP-PRODE.

[72]  Gopalan Nadathur,et al.  Reasoning in Abella about Structural Operational Semantics Specifications , 2009, Electron. Notes Theor. Comput. Sci..

[73]  Gilles Dowek,et al.  Higher-Order Unification and Matching , 2001, Handbook of Automated Reasoning.

[74]  Étienne Payet,et al.  Detecting Non-termination of Term Rewriting Systems Using an Unfolding Operator , 2006, LOPSTR.

[75]  Simon L. Peyton Jones,et al.  Composing contracts: an adventure in financial engineering (functional pearl) , 2000, ICFP '00.

[76]  Christian Urban,et al.  Avoiding Equivariance in Alpha-Prolog , 2005, TLCA.

[77]  Xavier Leroy A locally nameless solution to the POPLmark challenge , 2007 .

[78]  P. J. Landin The Mechanical Evaluation of Expressions , 1964, Comput. J..

[79]  Andrew M. Pitts,et al.  FreshML: programming with binders made simple , 2003, ICFP '03.

[80]  Soren Lassen Relational reasoning about contexts , 1997 .

[81]  Michael Norrish,et al.  Barendregt's Variable Convention in Rule Inductions , 2007, CADE.

[82]  Andrew M. Pitts,et al.  A Metalanguage for Programming with Bound Names Modulo Renaming , 2000, MPC.

[83]  Amr Sabry,et al.  The essence of compiling with continuations , 1993, PLDI '93.

[84]  de Ng Dick Bruijn Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser theorem , 1972 .

[85]  J. Girard,et al.  Proofs and types , 1989 .

[86]  Joseph P. Near,et al.  alpha-leanTAP: A Declarative Theorem Prover for First-Order Classical Logic , 2008, ICLP.

[87]  J. B. Wells,et al.  Typability and type checking in the second-order /spl lambda/-calculus are equivalent and undecidable , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[88]  Amy P. Felty,et al.  Higher-Order Abstract Syntax in Coq , 1995, TLCA.

[89]  C. A. R. Hoare,et al.  The emperor's old clothes , 1981, CACM.

[90]  Christian Urban,et al.  Nominal logic programming , 2006, TOPL.

[91]  Christian Urban,et al.  Mechanizing the Metatheory of LF , 2008, LICS.

[92]  Frank Pfenning,et al.  Higher-order abstract syntax , 1988, PLDI '88.

[93]  Michael Hanus,et al.  Multi-paradigm Declarative Languages , 2007, ICLP.

[94]  Cormac Flanagan,et al.  Status report: specifying javascript with ML , 2007, ML '07.

[95]  Vikram S. Adve,et al.  LLVM: a compilation framework for lifelong program analysis & transformation , 2004, International Symposium on Code Generation and Optimization, 2004. CGO 2004..

[96]  Xavier Leroy,et al.  Formal verification of a realistic compiler , 2009, CACM.

[97]  Luca Cardelli,et al.  Basic Polymorphic Typechecking , 1987, Sci. Comput. Program..

[98]  Zohar Manna,et al.  Proving termination with multiset orderings , 1979, CACM.

[99]  Douglas J. Howe Proving Congruence of Bisimulation in Functional Programming Languages , 1996, Inf. Comput..

[100]  Murdoch James Gabbay,et al.  Capture-avoiding substitution as a nominal algebra , 2007, Formal Aspects of Computing.