Improving efficiency of coupled schemes for Navier-Stokes equations by a connection to grad-div stabilized projection methods

We prove that in finite element settings where the divergence-free subspace of the velocity space has optimal approximation properties, the solution of Chorin/Temam projection methods for Navier-Stokes equations equipped with grad-div stabilization with parameter γ, converge to the associated coupled method solution with rate γ−1 as γ → ∞. We prove this first for backward Euler schemes, and then extend the results to BDF2 schemes, and finally to schemes with outflow boundary conditions. Several numerical experiments are given which verify the convergence rate, and show how using projection methods in this setting with large grad-div stabilization parameters can dramatically improve accuracy.

[1]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[2]  Maxim A. Olshanskii,et al.  An Augmented Lagrangian-Based Approach to the Oseen Problem , 2006, SIAM J. Sci. Comput..

[3]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time , 1986 .

[4]  Michael Neilan,et al.  Conforming and divergence-free Stokes elements on general triangular meshes , 2013, Math. Comput..

[5]  Jean-Luc Guermond,et al.  Some implementations of projection methods for Navier-Stokes equations , 1996 .

[6]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .

[7]  Volker John,et al.  On the parameter choice in grad-div stabilization for the Stokes equations , 2014, Adv. Comput. Math..

[8]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[9]  Andreas Prohl,et al.  On Pressure Approximation via Projection Methods for Nonstationary Incompressible Navier-Stokes Equations , 2008, SIAM J. Numer. Anal..

[10]  Richard S. Falk,et al.  Stokes Complexes and the Construction of Stable Finite Elements with Pointwise Mass Conservation , 2013, SIAM J. Numer. Anal..

[11]  Leo G. Rebholz,et al.  Numerical analysis and computational testing of a high accuracy Leray‐deconvolution model of turbulence , 2008 .

[12]  Joachim Schöberl,et al.  Multigrid methods for a parameter dependent problem in primal variables , 1999, Numerische Mathematik.

[13]  Shangyou Zhang,et al.  A new family of stable mixed finite elements for the 3D Stokes equations , 2004, Math. Comput..

[14]  Douglas N. Arnold,et al.  Quadratic velocity/linear pressure Stokes elements , 1992 .

[15]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[16]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[17]  A. J. Baker,et al.  A 3D incompressible Navier–Stokes velocity–vorticity weak form finite element algorithm , 2002 .

[18]  John A. Trangenstein,et al.  Mixed and Hybrid Finite Elements , 2013 .

[19]  William Layton,et al.  Introduction to the Numerical Analysis of Incompressible Viscous Flows , 2008 .

[20]  A. Prohl Projection and quasi-compressibility methods for solving the incompressible navier-stokes equations , 1997 .

[21]  Jean-Luc Guermond,et al.  Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale , 1999 .

[22]  Rolf Rannacher,et al.  On the finite element approximation of the nonstationary Navier-Stokes problem , 1980 .

[23]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[24]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[25]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[26]  Leo G. Rebholz,et al.  Efficient linear solvers for incompressible flow simulations using Scott‐Vogelius finite elements , 2013 .

[27]  R. Rannacher,et al.  Finite-element approximations of the nonstationary Navier-Stokes problem. Part IV: error estimates for second-order time discretization , 1990 .

[28]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .