Design and development of soft landing ion mobility: A novel instrument for preparative material deposition

The design and fabrication of a novel soft landing instrument Soft Landing Ion Mobility (SLIM) is described here. Topics covered include history of soft landing, gas phase mobility theory, the design and fabrication of SLIM, as well as applications pertaining to soft landing. Principle applications devised for this instrument involved the gas phase separation and selection of an ionized component from a multicomponent gas phase mixture as combing technique to optimize coatings, catalyst, and a variety of alternative application in the sciences.

[1]  Guido F. Verbeck,et al.  Resolution equations for high-field ion mobility , 2004, Journal of the American Society for Mass Spectrometry.

[2]  E. Denisov,et al.  Surface-induced dissociation in a Fourier transform ion cyclotron resonance mass spectrometer: instrument design and evaluation. , 2002, Analytical chemistry.

[3]  R. Ganeev,et al.  Pulsed laser deposition of metal films and nanoparticles in vacuum using subnanosecond laser pulses. , 2007, Applied optics.

[4]  W. S. Taylor,et al.  Metastable Metal Ion Production in Sputtering dc Glow Discharge Plasmas: Characterization by Electronic State Chromatography , 1999 .

[5]  Yuka Yamada,et al.  Nanometer‐sized silicon crystallites prepared by excimer laser ablation in constant pressure inert gas , 1996 .

[6]  H. Hill,et al.  Evaluation of Ultrahigh Resolution Ion Mobility Spectrometry as an Analytical Separation Device in Chromatographic Terms , 2000 .

[7]  Robby A. Petros,et al.  One-bead, one-compound peptide library sequencing via high-pressure ammonia cleavage coupled to nanomanipulation/nanoelectrospray ionization mass spectrometry. , 2010, Analytical biochemistry.

[8]  P. Watts,et al.  On the resolution obtainable in practical ion mobility systems , 1992 .

[9]  Jaemyoung Lee,et al.  Metal nanoparticles generated by laser ablation , 1998 .

[10]  R. Cooks,et al.  Soft landing of ions as a means of surface modification , 1977 .

[11]  P. Štrop,et al.  Preparative separation of mixtures by mass spectrometry. , 2005, Analytical chemistry.

[12]  E. A. Mason,et al.  Theory of plasma chromatography/gaseous electrophoresis. Review , 1975 .

[13]  A. Nakajima,et al.  Soft-landing isolation of Multidecker V2(benzene)3 complexes in an organic monolayer matrix: an infrared spectroscopy and thermal desorption study. , 2007, Journal of the American Chemical Society.

[14]  R. Cooks,et al.  Ion soft landing using a rectilinear ion trap mass spectrometer. , 2008, Analytical chemistry.

[15]  D. E. Powers,et al.  Supersonic copper clusters , 1983 .

[16]  D. Geohegan Fast intensified‐CCD photography of YBa2Cu3O7−x laser ablation in vacuum and ambient oxygen , 1992 .

[17]  A. Harms,et al.  Metal cluster cation reactions: Carbon monoxide association to Cu+n ions , 1990 .

[18]  S. Barlow,et al.  Preparation and in situ characterization of surfaces using soft landing in a Fourier transform ion cyclotron resonance mass spectrometer. , 2005, Analytical chemistry.

[19]  Paul R. Kemper,et al.  Electronic-state chromatography: application to first-row transition-metal ions , 1991 .

[20]  F. Tureček,et al.  Preparative separation of a multicomponent peptide mixture by mass spectrometry. , 2006, Journal of mass spectrometry : JMS.

[21]  J. Doye,et al.  Magic numbers and growth sequences of small face-centered-cubic and decahedral clusters , 1995 .

[22]  M. Jarrold,et al.  High-resolution ion mobility studies of sodium chloride nanocrystals , 1997 .

[23]  E. W. McDaniel,et al.  Transport Properties of Ions in Gases , 1988 .

[24]  Pressure dependent formation of small Cu and Ag particles during laser ablation , 1997 .

[25]  E. W. McDaniel,et al.  Tests of the Wannier Expressions for Diffusion Coefficients of Gaseous Ions in Electric Fields , 1971 .

[26]  H. Fujioka,et al.  Heteroepitaxial growth of gallium nitride on muscovite mica plates by pulsed laser deposition , 2005 .

[27]  G. Wannier,et al.  Cross Sections for Ion-Atom Collisions in He, Ne, and A , 1951 .

[28]  J. Futrell,et al.  Design and performance of an instrument for soft landing of biomolecular ions on surfaces. , 2007, Analytical chemistry.

[29]  Structure and energetics of Cu N clusters with ( 2 ⩽ N ⩽ 150 ) : An embedded-atom-method study , 2006 .

[30]  Z. Karpas,et al.  Ion mobility spectrometry , 1993, Breathborne Biomarkers and the Human Volatilome.

[31]  Formation of structural modifications in copper nanoclusters , 2007 .

[32]  R. Cooks,et al.  Ion/surface reactions and ion soft-landing. , 2005, Physical chemistry chemical physics : PCCP.

[33]  S. Sinnott,et al.  The growth and modification of materials via ion-surface processing , 2002 .

[34]  G. Wannier Motion of gaseous ions in strong electric fields , 1953 .

[35]  Muthu B. J. Wijesundara,et al.  Preparation of chemical gradient surfaces by hyperthermal polyatomic ion deposition: A new method for combinatorial materials science , 2001 .

[36]  M. Bowers,et al.  Gas-Phase Ion Chromatography: Transition Metal State Selection and Carbon Cluster Formation , 1993, Science.

[37]  Hiroyuki Hatano,et al.  Resolution measurement for ion mobility spectrometry , 1985 .