Initializing Wiener-Hammerstein models based on partitioning of the best linear approximation

This paper describes a new algorithm for initializing and estimating Wiener-Hammerstein models which consist of two linear parts with a static nonlinearity in between. The algorithm makes use of the best linear model of the system, which is a consistent estimate of the systems dynamics for Gaussian excitations. The linear model is split in all possible ways into two sub-models. For all possible splits, a Wiener-Hammerstein model is initialized which means that a nonlinearity is introduced in between the two sub-models. The linear parameters of this nonlinearity can be estimated using least-squares. All initialized models can then be ranked depending on the fit. Typically, one is only interested in the best one, for which all parameters are fitted using prediction error minimization. The paper explains the algorithm in detail and consistency of the initialization is proven. Computational aspects are investigated, showing that in most realistic cases, the number of splits of the initial linear model remains low enough to make the algorithm useful. The algorithm is illustrated on an example where it is shown that the initialization is a tool to avoid many local minima.

[1]  M. Boutayeb,et al.  Recursive identification method for MISO Wiener-Hammerstein model , 1995, IEEE Trans. Autom. Control..

[2]  Stephen A. Billings,et al.  Identification of systems containing linear dynamic and static nonlinear elements , 1982, Autom..

[3]  J. Schoukens,et al.  Modelling of Wiener-Hammerstein Systems via the Best Linear Approximation , 2009 .

[4]  Er-Wei Bai,et al.  Convergence of the iterative Hammerstein system identification algorithm , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[5]  J. Schoukens,et al.  Nonparametric initial estimates for Wiener-Hammerstein systems , 2006 .

[6]  D. Brillinger The identification of a particular nonlinear time series system , 1977 .

[7]  Johan Schoukens,et al.  Computing an initial estimate of a Wiener-Hammerstein system with a random phase multisine excitation , 2005, IEEE Transactions on Instrumentation and Measurement.

[8]  Keith R. Godfrey,et al.  Identification of Wiener-Hammerstein models using linear interpolation in the frequency domain (LIFRED) , 2002, IEEE Trans. Instrum. Meas..

[9]  M. Verhaegen,et al.  Identifying MIMO Hammerstein systems in the context of subspace model identification methods , 1996 .

[10]  Lennart Ljung,et al.  Nonlinear Black Box Modeling in System Identification , 1995 .

[11]  L. Ljung Convergence analysis of parametric identification methods , 1978 .

[12]  Lennart Ljung,et al.  Linear approximations of nonlinear FIR systems for separable input processes , 2005, Autom..

[13]  Håkan Hjalmarsson,et al.  A System, Signals and Identification Toolbox in Mathematica with Symbolic Capabilities , 2009 .

[14]  Brett Ninness,et al.  Estimation of Generalised Hammerstein-Wiener Systems , 2009 .

[15]  L. Ljung Nonlinear Black Box Models in Systems Identification , 1997 .

[16]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[17]  Keith R. Godfrey,et al.  Initial estimates for the dynamics of a Hammerstein system , 2007, Autom..

[18]  Keith R. Godfrey,et al.  Initial estimates for the dynamics of a Hammerstein system , 2006 .

[19]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[20]  Roderick Murray-Smith,et al.  Nonlinear structure identification with application to wiener-hammerstein systems , 2003 .

[21]  Johan Schoukens,et al.  Initializing Wiener-Hammerstein Models Based on Partitioning of the Best Linear Approximation , 2011 .

[22]  J. Schoukens,et al.  Identification of Linear Systems with Nonlinear Distortions , 2003 .

[23]  Keith R. Godfrey,et al.  Identification of wiener-hammerstein models with cubic nonlinearity using lifred , 2003 .

[24]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[25]  C. H. Chen,et al.  Maximum likelihood identification of stochastic Weiner-Hammerstein-type non-linear systems , 1992 .

[26]  Steve McLaughlin,et al.  Analysis of stochastic gradient identification of Wiener-Hammerstein systems for nonlinearities with Hermite polynomial expansions , 2001, IEEE Trans. Signal Process..

[27]  Torbjörn Wigren,et al.  Recursive prediction error identification using the nonlinear wiener model , 1993, Autom..

[28]  J. Schoukens,et al.  Parametric and nonparametric identification of linear systems in the presence of nonlinear distortions-a frequency domain approach , 1998, IEEE Trans. Autom. Control..

[29]  Bernard Delyon,et al.  Nonlinear black-box models in system identification: Mathematical foundations , 1995, Autom..

[30]  Jozef Vörös,et al.  Parameter identification of Wiener systems with multisegment piecewise-linear nonlinearities , 2007, Syst. Control. Lett..

[31]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..