Dual-spacecraft radio occultation measurement of the electron density near the lunar surface by the SELENE mission

[1] During the SELENE (Kaguya) mission the dual-spacecraft radio occultation technique was used to investigate the electron population in the vicinity of the lunar surface. One pair of coherent S-band radio signals from one spacecraft was used to probe the possible electron density enhancement near the Moon, and another signal pair from the other spacecraft measured the solar wind and the terrestrial ionosphere plasma fluctuations, which also exist in the measurement by the former signal pair. The results suggest that any stable ionosphere with densities comparable to the ones observed by the Soviet Luna 19 and 22 missions does not exist near the terminator at high latitudes, although the occurrence of temporal or localized density enhancements cannot be ruled out.

[1]  Z. Yamamoto,et al.  Radio occultation measurement of the electron density near the lunar surface using a subsatellite on the SELENE mission , 2012 .

[2]  Richard R. Vondrak,et al.  A reanalysis of the Apollo light scattering observations, and implications for lunar exospheric dust , 2011 .

[3]  D. Glenar,et al.  On the role of dust in the lunar ionosphere , 2011 .

[4]  Y. Kasahara,et al.  Lunar ionosphere exploration method using auroral kilometric radiation , 2011 .

[5]  S. Nakazawa,et al.  Lunar Magnetic Field Observation and Initial Global Mapping of Lunar Magnetic Anomalies by MAP-LMAG Onboard SELENE (Kaguya) , 2010 .

[6]  S. Sasaki,et al.  In-flight Performance and Initial Results of Plasma Energy Angle and Composition Experiment (PACE) on SELENE (Kaguya) , 2010 .

[7]  Z. Yamamoto,et al.  Studying the Lunar Ionosphere with SELENE Radio Science Experiment , 2008 .

[8]  T. Iwata,et al.  The possibility of studying the lunar ionosphere with the SELENE radio science experiment , 2008 .

[9]  Edward A. West,et al.  Lunar dust charging by photoelectric emissions , 2007 .

[10]  W. Farrell,et al.  A Dynamic Fountain Model for Lunar Dust , 2005 .

[11]  T. Imamura,et al.  Application of the GPS network to estimate the effect of the terrestrial ionosphere on the radio occultation measurements of planetary ionospheres , 2001 .

[12]  Mihaly Horanyi,et al.  Experimental investigations on photoelectric and triboelectric charging of dust , 2001 .

[13]  S. Alan Stern,et al.  The lunar atmosphere: History, status, current problems, and context , 1999 .

[14]  K. Hocke,et al.  A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982-1995 , 1996 .

[15]  Richard R. Vondrak,et al.  Lunar Base Activities and the Lunar Environment , 1992 .

[16]  H. Zook,et al.  Large scale lunar horizon glow and a high altitude lunar dust exosphere , 1991 .

[17]  L. Samoznaev,et al.  Two-frequency radio occultation measurements with Venera-9 and Venera-10 orbiters , 1980 .

[18]  N. Savich,et al.  Observations of radio source occultations by the moon and the nature of the plasma near the moon , 1979 .

[19]  J. W. Chamberlain Theory of planetary atmospheres , 1978 .

[20]  N. Savich Cislunar plasma model. , 1976 .

[21]  L. Samoznaev,et al.  Some results of cislunar plasma research , 1976 .

[22]  J. Mccoy,et al.  Photometric studies of light scattering above the lunar terminator from Apollo solar corona photography , 1976 .

[23]  J. Freeman,et al.  Lunar electric fields, surface Potential and Associated Plasma Sheaths , 1975 .

[24]  F. S. Johnson,et al.  The lunar atmosphere , 1974 .

[25]  V. A. Vinogradov,et al.  Radio Transparency of Circumlunar Space Using the Luna-19 Station , 1974 .

[26]  D. R. Criswell,et al.  Evidence for a high altitude distribution of lunar dust , 1974 .

[27]  R. J. L. Grard,et al.  Photoemission from lunar surface fines and the lunar photoelectron sheath , 1972 .

[28]  B. Elsmore Radio observations of the lunar atmosphere , 1957 .

[29]  F. Link Occultations des radiosources par la Lune et phénomènes connexes , 1956 .