Stability results for infinite-dimensional linear control systems subject to saturations

This article deals with the stability analysis and the derivation of ISS-Lyapunov functions for infinite-dimensional linear systems subject to saturations. Two cases are considered: 1) the saturation acts in the same space as the control space; 2) the saturation acts in another space, especially a Banach space. For the first case, an explicit ISS-Lyapunov function can be derived. For the second case, we prove the global asymptotic stability of the origin when considering all weak solutions.

[1]  A. Fuller In-the-large stability of relay and saturating control systems with linear controllers , 1969 .

[2]  Marshall Slemrod Feedback stabilization of a linear control system in Hilbert space with ana priori bounded control , 1989, Math. Control. Signals Syst..

[3]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[4]  H. Sussmann,et al.  On the stabilizability of multiple integrators by means of bounded feedback controls , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[5]  A. Teel Global stabilization and restricted tracking for multiple integrators with bounded controls , 1992 .

[6]  Eduardo Sontag,et al.  On characterizations of the input-to-state stability property , 1995 .

[7]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[8]  A. Megretski,et al.  L 2 Bibo Output Feedback Stabilization With Saturated Control , 1996 .

[9]  Eduardo Sontag,et al.  On Finite-Gain Stabilizability of Linear Systems Subject to Input Saturation , 1996 .

[10]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[11]  Ping Hou,et al.  On simultaneous global external and global internal stabilization of critically unstable linear systems with saturating actuators , 2000, IEEE Trans. Autom. Control..

[12]  T. Seidman,et al.  A note on stabilization with saturating feedback , 2001 .

[13]  Dennis S. Bernstein,et al.  Naive control of the double integrator , 2001 .

[14]  Irena Lasiecka,et al.  Strong stability of elastic control systems with dissipative saturating feedback , 2003, Syst. Control. Lett..

[15]  Ruth F. Curtain,et al.  Exponential stabilization of well-posed systems by colocated feedback , 2006, SIAM J. Control. Optim..

[16]  G. Weiss,et al.  Observation and Control for Operator Semigroups , 2009 .

[17]  Mauricio Sepúlveda,et al.  Uniform stabilization of numerical schemes for the critical generalized Korteweg-de Vries equation with damping , 2010, Numerische Mathematik.

[18]  Frédéric Mazenc,et al.  ISS Lyapunov functions for time-varying hyperbolic partial differential equations , 2011, IEEE Conference on Decision and Control and European Control Conference.

[19]  Eduardo Cerpa,et al.  Control of a Korteweg-de Vries equation: A tutorial , 2013 .

[20]  Salah Laghrouche,et al.  Lp-Stabilization of Integrator Chains Subject to Input Saturation Using Lyapunov-Based Homogeneous Design , 2014, SIAM J. Control. Optim..

[21]  Sophie Tarbouriech,et al.  Wave Equation With Cone-Bounded Control Laws , 2016, IEEE Transactions on Automatic Control.

[22]  Andrii Mironchenko,et al.  Global converse Lyapunov theorems for infinite-dimensional systems , 2016 .

[23]  Yacine Chitour,et al.  Strong iISS for a class of systems under saturated feedback , 2016, Autom..

[24]  Iasson Karafyllis,et al.  ISS with Respect to Boundary Disturbances for 1-D Parabolic PDEs , 2015, IEEE Transactions on Automatic Control.

[25]  Christophe Prieur,et al.  Global Stabilization of a Korteweg-De Vries Equation With Saturating Distributed Control , 2016, SIAM J. Control. Optim..

[26]  Christophe Prieur,et al.  Cone-bounded feedback laws for m-dissipative operators on Hilbert spaces , 2017, Math. Control. Signals Syst..

[27]  Fabian R. Wirth,et al.  Characterizations of Input-to-State Stability for Infinite-Dimensional Systems , 2017, IEEE Transactions on Automatic Control.