Aerosol-climate interactions in the CAM-Oslo atmospheric GCM and investigation of associated basic shortcomings

The paper discusses some challenges in aerosol-climate modelling. CAM-Oslo, extended from NCAR-CAM3, employs an aerosol module for sea-salt, dust, sulphate, black carbon (BC) and particulate organic matter (OM). Primary aerosol size-distributions are modified by condensation, coagulation and wet-phase processes. Aerosol optics and cloud droplet numbers use look-up tables constructed from first principles. Ground level sulphate and sea-salt are generally well modelled, BC and OM are slightly underestimated (uncertain), and dust is considerably (factor∼2) underestimated. Since non-desert dust, nitrate, anthropogenic secondary organics, and biological particles are omitted, aerosol optical depths (0.12) are underestimated by 10–25%. The underestimates are large in areas with biomass burning and soil dust. The direct and indirect forcing of aerosol increments since pre-industrial time are estimated at +0.031 W m −2 and −1.78 W m −2 , respectively. Although the total absorption AOD probably is slightly underestimated, the BC contributes to DRF with double strength compared to the AeroCom average. Main reasons for this include: internal BC-mixing (+0.2 W m −2 ), accumulation mode BC-agglomerates (+0.05 W m −2 ), assumed aitken-mode OM-BC mixture (+0.1 W m −2 ), large BC fraction (36%) above 500 hPa, and high low-level cloudiness. Using a prognostic CDNC and process parametrized CCN activation instead of assuming CDNC are equal to CCN, the indirect forcing is 36% smaller.

[1]  L. Ruby Leung,et al.  Prediction of cloud droplet number in a general , 1997 .

[2]  W. Collins,et al.  The Community Climate System Model Version 3 (CCSM3) , 2006 .

[3]  James J. Hack,et al.  Simulation of the Global Hydrological Cycle in the CCSM Community Atmosphere Model Version 3 (CAM3): Mean Features , 2006 .

[4]  R. Charlson,et al.  Elemental carbon in the atmosphere: cycle and lifetime , 1983 .

[5]  Donald R. Johnson,et al.  Seasonal distributions of diabatic heating during the First GARP Global Experiment , 1983 .

[6]  M. Wesely Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models , 1989 .

[7]  O. Boucher,et al.  Refractive index of aerosol particles over the Amazon tropical forest during LBA-EUSTACH 1999 , 2003 .

[8]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[9]  P. J. Rasch,et al.  Radiative forcing due to sulfate aerosols from simulations with the National Center for Atmospheric Research Community Climate Model, Version 3 , 2000 .

[10]  Philip J. Rasch,et al.  A Comparison of the CCM3 Model Climate Using Diagnosed and Predicted Condensate Parameterizations , 1998 .

[11]  T. Berntsen,et al.  A global three‐dimensional chemical transport model for the troposphere: 1. Model description and CO and ozone results , 1997 .

[12]  G. Schmidt,et al.  Sulfur, sea salt, and radionuclide aerosols in GISS ModelE , 2006 .

[13]  J. Penner,et al.  Effects of anthropogenic sulfate on cloud drop nucleation and optical properties , 1995 .

[14]  N. McFarlane,et al.  Sensitivity of Climate Simulations to the Parameterization of Cumulus Convection in the Canadian Climate Centre General Circulation Model , 1995, Data, Models and Analysis.

[15]  John H. Seinfeld,et al.  Global secondary organic aerosol from isoprene oxidation , 2006 .

[16]  D. Randall,et al.  A Semiempirical Cloudiness Parameterization for Use in Climate Models , 1996 .

[17]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1997 .

[18]  J. Wilson,et al.  A global black carbon aerosol model , 1996 .

[19]  W. Collins,et al.  The Formulation and Atmospheric Simulation of the Community Atmosphere Model Version 3 (CAM3) , 2006 .

[20]  James J. Hack,et al.  A modified formulation of fractional stratiform condensation rate in the NCAR Community Atmospheric Model (CAM2) , 2003 .

[21]  Johannes Quaas,et al.  Model intercomparison of indirect aerosol effects , 2006 .

[22]  O. Boucher,et al.  The aerosol-climate model ECHAM5-HAM , 2004 .

[23]  W. Rossow,et al.  The International Satellite Cloud Climatology Project (ISCCP) Web Site An Online Resource for Research , 2004 .

[24]  Jens Debernard,et al.  Response of the climate system to aerosol direct and indirect forcing: Role of cloud feedbacks , 2005 .

[25]  F. Binkowski,et al.  The Regional Particulate Matter Model 1. Model description and preliminary results , 1995 .

[26]  S. Ghan,et al.  Competition between Sea Salt and Sulfate Particles as Cloud Condensation Nuclei , 1998 .

[27]  Olivier Boucher,et al.  Aerosol absorption and radiative forcing , 2006 .

[28]  M. Jacobson,et al.  Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols , 2022 .

[29]  James G. Hudson,et al.  Evaluation of aerosol direct radiative forcing in MIRAGE , 2001 .

[30]  Trude Storelvmo,et al.  Aerosol-cloud-climate interactions in the climate model CAM-Oslo , 2008 .

[31]  Michael Schulz,et al.  Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations , 2006 .

[32]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[33]  A. Slingo A GCM Parameterization for the Shortwave Radiative Properties of Water Clouds , 1989 .

[34]  A. Lacis,et al.  Assessing Goddard Institute for Space Studies ModelE aerosol climatology using satellite and ground‐based measurements: A comparison study , 2006 .

[35]  James J. Hack,et al.  Response of Climate Simulation to a New Convective Parameterization in the National Center for Atmospheric Research Community Climate Model (CCM3) , 1998 .

[36]  John H. Seinfeld,et al.  Global impacts of gas‐phase chemistry‐aerosol interactions on direct radiative forcing by anthropogenic aerosols and ozone , 2005 .

[37]  Axel Lauer,et al.  The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment , 2007 .

[38]  Tami C. Bond,et al.  Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom , 2006 .

[39]  S. Ghan,et al.  A parameterization of aerosol activation: 2. Multiple aerosol types , 2000 .

[40]  A. Kirkevåg,et al.  Calculated Feedback Effects of Climate Change Caused by Anthropogenic Aerosols , 2007 .

[41]  Tami C. Bond,et al.  Climate-relevant properties of primary particulate emissions from oil and natural gas combustion , 2006 .

[42]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[43]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .

[44]  J. Wilson,et al.  M7: An efficient size‐resolved aerosol microphysics module for large‐scale aerosol transport models , 2004 .

[45]  Xindi Bian,et al.  MIRAGE: Model description and evaluation of aerosols and trace gases , 2004 .

[46]  Jens Debernard,et al.  On the additivity of climate response to anthropogenic aerosols and CO2, and the enhancement of future global warming by carbonaceous aerosols , 2008 .

[47]  A. Lacis,et al.  Near-Global Survey of Effective Droplet Radii in Liquid Water Clouds Using ISCCP Data. , 1994 .

[48]  R. Rogers,et al.  A short course in cloud physics , 1976 .

[49]  W. Collins,et al.  An AeroCom Initial Assessment - Optical Properties in Aerosol Component Modules of Global Models , 2005 .

[50]  R. Jaenicke Abundance of Cellular Material and Proteins in the Atmosphere , 2005, Science.

[51]  T. Iversen,et al.  The Role of Cumulus Parameterisation in Global and Regional Sulphur Transport , 2004 .

[52]  J. Janzen The refractive index of colloidal carbon , 1979 .

[53]  Irina N. Sokolik,et al.  Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths , 1999 .

[54]  K. Trenberth,et al.  Earth's annual global mean energy budget , 1997 .

[55]  T. Bond,et al.  Light Absorption by Carbonaceous Particles: An Investigative Review , 2006 .

[56]  J. Wilson,et al.  A modeling study of global mixed aerosol fields , 2001 .

[57]  Variability in concentrations of cloud condensation nuclei in the marine cloud–topped boundary layer , 1993 .

[58]  Steven J. Ghan,et al.  Impact of aerosol size representation on modeling aerosol‐cloud interactions , 2002 .

[59]  T. Iversen,et al.  A scheme for process‐tagged SO4 and BC aerosols in NCAR CCM3: Validation and sensitivity to cloud processes , 2002 .

[60]  J. Heintzenberg,et al.  On the state of mixing of particles due to Brownian coagulation , 1992 .

[61]  Joyce E. Penner,et al.  Indirect effect of sulfate and carbonaceous aerosols: A mechanistic treatment , 2000 .

[62]  J. Coakley,et al.  Climate Forcing by Anthropogenic Aerosols , 1992, Science.

[63]  Steven J. Ghan,et al.  Predicting cloud droplet number concentration in community atmosphere model (CAM)-Oslo , 2006 .

[64]  Axel Lauer,et al.  © Author(s) 2006. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Analysis and quantification of the diversities of aerosol life cycles , 2022 .

[65]  P. J. Rasch,et al.  Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: Description, evaluation, features, and sensitivity to aqueous chemistry , 2000 .

[66]  W. Collins,et al.  Description of the NCAR Community Atmosphere Model (CAM 3.0) , 2004 .

[67]  A. Kirkevåg,et al.  Global direct radiative forcing by process‐parameterized aerosol optical properties , 2002 .

[68]  Y. Qian,et al.  More frequent cloud‐free sky and less surface solar radiation in China from 1955 to 2000 , 2005 .

[69]  M. Andreae,et al.  Size Matters More Than Chemistry for Cloud-Nucleating Ability of Aerosol Particles , 2006, Science.

[70]  P. Rasch,et al.  Representation of Clouds and Precipitation Processes in the Community Atmosphere Model Version 3 (CAM3) , 2006 .

[71]  E. Nilsson,et al.  Laboratory simulations and parameterization of the primary marine aerosol production , 2003 .

[72]  B. Barkstrom,et al.  Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment , 1990 .

[73]  U. Lohmann,et al.  Importance of submicron surface-active organic aerosols for pristine Arctic clouds , 2005 .

[74]  W. Cotton,et al.  The Physics of the Marine Stratocumulus-Capped Mixed Layer. , 1987 .

[75]  V. Canuto,et al.  Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data , 2006 .

[76]  Jón Egill Kristjánsson,et al.  Studies of the aerosol indirect effect from sulfate and black carbon aerosols , 2002 .

[77]  T. Iversen,et al.  Correction to “A scheme for process-tagged SO4 and BC aerosols in NCAR-CCM3: Validation and sensitivity to cloud processes” , 2003 .