VIBRATIONS OF A BEAM BETWEEN OBSTACLES. CONVERGENCE OF A FULLY DISCRETIZED APPROXIMATION
暂无分享,去创建一个
[1] Jacques Simeon,et al. Compact Sets in the Space L~(O, , 2005 .
[2] Laetitia Paoli,et al. Time discretization of vibro‐impact , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[3] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[4] O. Janin,et al. Comparison of several numerical methods for mechanical systems with impacts , 2001 .
[5] D. Stoianovici,et al. A Critical Study of the Applicability of Rigid-Body Collision Theory , 1996 .
[6] Steven W. Shaw,et al. Chaotic vibrations of a beam with non-linear boundary conditions , 1983 .
[7] Laetitia Paoli,et al. A numerical scheme for impact problems , 1999 .
[8] Laetitia Paoli,et al. An existence result for non-smooth vibro-impact problems , 2005 .
[9] L. Fox. The Numerical Solution of Two-Point Boundary Problems in Ordinary Differential Equations , 1957 .
[10] Steven W. Shaw,et al. The transition to chaos in a simple mechanical system , 1989 .
[11] M. Schatzman,et al. Numerical approximation of a wave equation with unilateral constraints , 1989 .
[12] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[13] Laetitia Paoli. Analyse numérique de vibrations avec contraintes unilatérales , 1993 .
[14] Laetitia Paoli. CONTINUOUS DEPENDENCE ON DATA FOR VIBRO-IMPACT PROBLEMS , 2005 .
[15] L. Paoli,et al. ILL-POSEDNESS IN VIBRO-IMPACT AND ITS NUMERICAL CONSEQUENCES , 2000 .
[16] Peter Ravn,et al. A Continuous Analysis Method for Planar Multibody Systems with Joint Clearance , 1998 .
[17] Yves Dumont. Vibrations of a beam between stops: numerical simulations and comparison of several numerical schemes , 2002, Math. Comput. Simul..
[18] Yves Dumont,et al. Some Remarks on a Vibro-Impact Scheme , 2003, Numerical Algorithms.
[19] B. Brogliato,et al. Numerical simulation of finite dimensional multibody nonsmooth mechanical systems , 2001 .
[20] Laetitia Paoli,et al. A Numerical Scheme for Impact Problems I: The One-Dimensional Case , 2002, SIAM J. Numer. Anal..
[21] Laetitia Paoli,et al. Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales: cas avec perte d'énergie , 1993 .
[22] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .