Spectral Profile Modifications in Metal‐Enhanced Fluorescence

[1]  P. Etchegoin,et al.  Advanced aspects of electromagnetic SERS enhancement factors at a hot spot , 2008 .

[2]  Jean Aubard,et al.  Experimental Verification of the SERS Electromagnetic Model beyond the |E|4 Approximation: Polarization Effects , 2008 .

[3]  Jean Aubard,et al.  Surface enhanced Raman spectroscopy on nanolithography-prepared substrates , 2008 .

[4]  N. Pieczonka,et al.  Single molecule analysis by surfaced-enhanced Raman scattering. , 2008, Chemical Society reviews.

[5]  Lukas Novotny,et al.  Spectral dependence of single molecule fluorescence enhancement. , 2007, Optics express.

[6]  Jean Aubard,et al.  Mechanisms of Spectral Profile Modification in Surface-Enhanced Fluorescence , 2007 .

[7]  Pablo G. Etchegoin,et al.  Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study , 2007 .

[8]  G. Schatz,et al.  Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. , 2007, Journal of the American Chemical Society.

[9]  R. Silbey,et al.  Molecular Fluorescence and Energy Transfer Near Interfaces , 2007 .

[10]  P. Etchegoin,et al.  An analytic model for the optical properties of gold. , 2006, The Journal of chemical physics.

[11]  Yukihiro Ozaki,et al.  Variations in steady-state and time-resolved background luminescence from surface-enhanced resonance Raman scattering-active single Ag nanoaggregates. , 2006, The journal of physical chemistry. B.

[12]  P. Etchegoin,et al.  Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection. , 2006, The Journal of chemical physics.

[13]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[14]  Pablo G. Etchegoin,et al.  Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy☆ , 2006 .

[15]  V. Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[16]  Yukihiro Ozaki,et al.  Surface-enhanced resonance Raman scattering and background light emission coupled with plasmon of single Ag nanoaggregates. , 2006, The Journal of chemical physics.

[17]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[18]  P. Etchegoin,et al.  Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. , 2006, The journal of physical chemistry. B.

[19]  Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Fluorescence (SEF) in the context of modified spontaneous emission , 2005, physics/0509154.

[20]  Masayuki Futamata,et al.  Inelastic scattering and emission correlated with enormous SERS of dye adsorbed on Ag nanoparticles , 2005 .

[21]  Masayuki Futamata,et al.  Elastic scattering and emission correlated with single‐molecule SERS , 2005 .

[22]  M. Moskovits Surface‐enhanced Raman spectroscopy: a brief retrospective , 2005 .

[23]  R. V. Van Duyne,et al.  Wavelength-scanned surface-enhanced Raman excitation spectroscopy. , 2005, The journal of physical chemistry. B.

[24]  Hongxing Xu,et al.  Surface-enhanced Raman scattering and fluorescence near metal nanoparticles , 2005 .

[25]  Joseph R. Lakowicz,et al.  Advances in Surface-Enhanced Fluorescence , 2004, Journal of Fluorescence.

[26]  C. D. Geddes,et al.  Editorial: Metal-Enhanced Fluorescence , 2002, Journal of Fluorescence.

[27]  Louis E. Brus,et al.  Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals , 2003 .

[28]  Christy L. Haynes,et al.  Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy † , 2003 .

[29]  D. Reinhoudt,et al.  Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. , 2002, Physical review letters.

[30]  Bernhard Lamprecht,et al.  Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering , 2002 .

[31]  C. Seidel,et al.  Photobleaching of Fluorescent Dyes under Conditions Used for Single-Molecule Detection:  Evidence of Two-Step Photolysis. , 1998, Analytical chemistry.

[32]  A. Harriman,et al.  Photochemistry of intercalated methylene blue: Photoinduced hydrogen atom abstraction from guanine and adenine , 1993 .

[33]  Barnett,et al.  Spontaneous emission in absorbing dielectric media. , 1992, Physical review letters.

[34]  H. Chew Transition rates of atoms near spherical surfaces , 1987 .

[35]  Horia Metiu,et al.  Enhancement of molecular fluorescence and photochemistry by small metal particles , 1985 .

[36]  G. W. Ford,et al.  Electromagnetic interactions of molecules with metal surfaces , 1984 .

[37]  H. Metiu Surface enhanced spectroscopy , 1984 .

[38]  M. Moskovits Surface selection rules , 1982 .

[39]  Marcel Ausloos,et al.  Absorption spectrum of clusters of spheres from the general solution of Maxwell's equations. II. Optical properties of aggregated metal spheres , 1982 .

[40]  E. Burstein,et al.  Luminescence of dye molecules adsorbed at a Ag surface , 1981 .

[41]  Richard K. Chang,et al.  Local fields at the surface of noble-metal microspheres , 1981 .

[42]  Michael R. Philpott,et al.  Effect of surface plasmons on transitions in molecules , 1975 .

[43]  H. Morawitz,et al.  Coupling of an excited molecule to surface plasmons , 1974 .