Semantic trajectories: Mobility data computation and annotation

With the large-scale adoption of GPS equipped mobile sensing devices, positional data generated by moving objects (e.g., vehicles, people, animals) are being easily collected. Such data are typically modeled as streams of spatio-temporal (x,y,t) points, called trajectories. In recent years trajectory management research has progressed significantly towards efficient storage and indexing techniques, as well as suitable knowledge discovery. These works focused on the geometric aspect of the raw mobility data. We are now witnessing a growing demand in several application sectors (e.g., from shipment tracking to geo-social networks) on understanding the semantic behavior of moving objects. Semantic behavior refers to the use of semantic abstractions of the raw mobility data, including not only geometric patterns but also knowledge extracted jointly from the mobility data and the underlying geographic and application domains information. The core contribution of this article lies in a semantic model and a computation and annotation platform for developing a semantic approach that progressively transforms the raw mobility data into semantic trajectories enriched with segmentations and annotations. We also analyze a number of experiments we did with semantic trajectories in different domains.

[1]  Vania Bogorny,et al.  A model for enriching trajectories with semantic geographical information , 2007, GIS.

[2]  Cédric du Mouza,et al.  Mobility Patterns , 2005, STDBM.

[3]  John Krumm,et al.  Hidden Markov map matching through noise and sparseness , 2009, GIS.

[4]  Dieter Pfoser,et al.  On Map-Matching Vehicle Tracking Data , 2005, VLDB.

[5]  Eamonn J. Keogh,et al.  Segmenting Time Series: A Survey and Novel Approach , 2002 .

[6]  Xing Xie,et al.  Mining correlation between locations using human location history , 2009, GIS.

[7]  Marco Heurich,et al.  An event-based conceptual model for context-aware movement analysis , 2011, Int. J. Geogr. Inf. Sci..

[8]  Stefano Spaccapietra,et al.  SeMiTri: a framework for semantic annotation of heterogeneous trajectories , 2011, EDBT/ICDT '11.

[9]  Karl Aberer,et al.  An adaptive approach for online segmentation of multi-dimensional mobile data , 2012, MobiDE '12.

[10]  Christian S. Jensen,et al.  Mining significant semantic locations from GPS data , 2010, Proc. VLDB Endow..

[11]  Fabio Porto,et al.  A conceptual view on trajectories , 2008, Data Knowl. Eng..

[12]  Bo Xu,et al.  Moving objects databases: issues and solutions , 1998, Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243).

[13]  Jiawei Han,et al.  Mining periodic behaviors for moving objects , 2010, KDD.

[14]  Christian S. Jensen,et al.  A benchmark for evaluating moving object indexes , 2008, Proc. VLDB Endow..

[15]  Qiang Yang,et al.  High-Level Goal Recognition in a Wireless LAN , 2004, AAAI.

[16]  Nirvana Meratnia,et al.  Spatiotemporal Compression Techniques for Moving Point Objects , 2004, EDBT.

[17]  Jae-Gil Lee,et al.  MoveMine: Mining moving object data for discovery of animal movement patterns , 2011, TIST.

[18]  Ralf Hartmut Güting,et al.  Indexing the Trajectories of Moving Objects in Networks* , 2004, GeoInformatica.

[19]  Leticia I. Gómez,et al.  Efficient constraint evaluation in categorical sequential pattern mining for trajectory databases , 2009, EDBT '09.

[20]  Stefano Spaccapietra,et al.  Trajectory Ontologies and Queries , 2008 .

[21]  Maike Buchin,et al.  An algorithmic framework for segmenting trajectories based on spatio-temporal criteria , 2010, GIS '10.

[22]  Andreas Savvides,et al.  A method for discovering components of human rituals from streams of sensor data , 2010, CIKM.

[23]  Jae-Gil Lee,et al.  Mining Massive RFID, Trajectory, and Traffic Data Sets , 2008, Knowledge Discovery and Data Mining.

[24]  Xiaofang Zhou,et al.  From trajectories to activities: a spatio-temporal join approach , 2009, LBSN '09.

[25]  Zhixian Yan,et al.  Traj-ARIMA: a spatial-time series model for network-constrained trajectory , 2010, IWCTS '10.

[26]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[27]  Kay W. Axhausen,et al.  Processing Raw Data from Global Positioning Systems without Additional Information , 2009 .

[28]  Shashi Shekhar,et al.  Discovering personally meaningful places: An interactive clustering approach , 2007, TOIS.

[29]  Vania Bogorny,et al.  A clustering-based approach for discovering interesting places in trajectories , 2008, SAC '08.

[30]  David Bernstein,et al.  Some map matching algorithms for personal navigation assistants , 2000 .

[31]  Nikos Pelekis,et al.  Building real-world trajectory warehouses , 2008, MobiDE '08.

[32]  Robert B. Noland,et al.  Current map-matching algorithms for transport applications: State-of-the art and future research directions , 2007 .

[33]  A. Prasad Sistla,et al.  DOMINO: databases fOr MovINg Objects tracking , 1999, SIGMOD '99.

[34]  Nikos Pelekis,et al.  SeTraStream: Semantic-Aware Trajectory Construction over Streaming Movement Data , 2011, SSTD.

[35]  Ralf Hartmut Güting,et al.  Moving Objects Databases , 2005 .

[36]  M. Goodchild,et al.  Uncertainty in geographical information , 2002 .

[37]  Dino Pedreschi,et al.  Mobility, Data Mining and Privacy - Geographic Knowledge Discovery , 2008, Mobility, Data Mining and Privacy.

[38]  Michael Wessel,et al.  What Happened to Bob? Semantic Data Mining of Context Histories , 2009, Description Logics.

[39]  Hans-Peter Kriegel,et al.  Efficient processing of spatial joins using R-trees , 1993, SIGMOD Conference.

[40]  A. Kornhauser,et al.  An Introduction to Map Matching for Personal Navigation Assistants , 1998 .

[41]  Hans-Peter Kriegel,et al.  The R*-tree: an efficient and robust access method for points and rectangles , 1990, SIGMOD '90.

[42]  Christian S. Jensen,et al.  Indexing the positions of continuously moving objects , 2000, SIGMOD '00.

[43]  Wei-Ying Ma,et al.  Recommending friends and locations based on individual location history , 2011, ACM Trans. Web.

[44]  Bart Kuijpers,et al.  Trajectory databases: Data models, uncertainty and complete query languages , 2007, J. Comput. Syst. Sci..

[45]  D. Gática-Pérez,et al.  Towards rich mobile phone datasets: Lausanne data collection campaign , 2010 .

[46]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[47]  Nikos Pelekis,et al.  Hermes - A Framework for Location-Based Data Management , 2006, EDBT.

[48]  Hai Yang,et al.  ACM Transactions on Intelligent Systems and Technology - Special Section on Urban Computing , 2014 .

[49]  Randall Guensler,et al.  Smoothing Methods to Minimize Impact of Global Positioning System Random Error on Travel Distance, Speed, and Acceleration Profile Estimates , 2006 .

[50]  Xing Xie,et al.  Understanding transportation modes based on GPS data for web applications , 2010, TWEB.

[51]  Yücel Saygin,et al.  Towards trajectory anonymization: a generalization-based approach , 2008, SPRINGL '08.

[52]  Xing Xie,et al.  Mining user similarity based on location history , 2008, GIS '08.

[53]  Dino Pedreschi,et al.  Advanced knowledge discovery on movement data with the GeoPKDD system , 2010, EDBT '10.

[54]  Ralf Hartmut Güting,et al.  Modeling and querying moving objects in networks , 2006, The VLDB Journal.

[55]  Stefano Spaccapietra,et al.  A Hybrid Model and Computing Platform for Spatio-semantic Trajectories , 2010, ESWC.

[56]  K. W. Axhausen,et al.  Processing GPS raw data without additional information , 2022 .

[57]  Chengyang Zhang,et al.  Map-matching for low-sampling-rate GPS trajectories , 2009, GIS.