Pericytes in the disease spotlight

[1]  G. DeLuca,et al.  Microglia directly associate with pericytes in the central nervous system , 2023, Glia.

[2]  D. Voehringer,et al.  Neutrophil breaching of the blood vessel pericyte layer during diapedesis requires mast cell-derived IL-17A , 2022, Nature Communications.

[3]  Z. Liu,et al.  Activating NO–sGC crosstalk in the mouse vascular niche promotes vascular integrity and mitigates acute lung injury , 2022, The Journal of experimental medicine.

[4]  D. Antonetti,et al.  Transgenic animal models to explore and modulate the blood brain and blood retinal barriers of the CNS , 2022, Fluids and Barriers of the CNS.

[5]  H. Wiendl,et al.  CNS Pericytes Modulate Local T Cell Infiltration in EAE , 2022, International journal of molecular sciences.

[6]  J. Björkegren,et al.  A single-cell transcriptomic inventory of murine smooth muscle cells. , 2022, Developmental cell.

[7]  Neal K. Bennett,et al.  Ensembles of endothelial and mural cells promote angiogenesis in prenatal human brain , 2022, Cell.

[8]  Mikko T. Huuskonen,et al.  A “multi-omics” analysis of blood–brain barrier and synaptic dysfunction in APOE4 mice , 2022, The Journal of experimental medicine.

[9]  M. Majesky,et al.  Pericyte remodeling is deficient in the aged brain and contributes to impaired capillary flow and structure , 2022, bioRxiv.

[10]  M. Graupera,et al.  When, where and which PIK3CA mutations are pathogenic in congenital disorders , 2022, Nature Cardiovascular Research.

[11]  S. Baek,et al.  Single Cell Transcriptomic Analysis Reveals Organ Specific Pericyte Markers and Identities , 2022, Frontiers in Cardiovascular Medicine.

[12]  Joana Almaça,et al.  Pericyte Control of Blood Flow in Intraocular Islet Grafts Impacts Glucose Homeostasis in Mice , 2022, Diabetes.

[13]  Ying Sun,et al.  The SARS-CoV-2 receptor ACE2 is expressed in mouse pericytes but not endothelial cells: Implications for COVID-19 vascular research , 2022, Stem Cell Reports.

[14]  M. Caputo,et al.  Cardiac pericyte reprogramming by MEK inhibition promotes arteriologenesis and angiogenesis of the ischemic heart , 2022, The Journal of clinical investigation.

[15]  D. Attwell,et al.  The Ca2+-gated channel TMEM16A amplifies capillary pericyte contraction and reduces cerebral blood flow after ischemia , 2022, The Journal of clinical investigation.

[16]  G. Koh,et al.  Pericyte Loss Leads to Capillary Stalling Through Increased Leukocyte-Endothelial Cell Interaction in the Brain , 2022, Frontiers in Cellular Neuroscience.

[17]  Róbert Pálovics,et al.  A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk , 2022, Nature.

[18]  B. Cui,et al.  Pericyte-to-endothelial cell signaling via vitronectin-integrin regulates blood-CNS barrier , 2022, Neuron.

[19]  L. Tsai,et al.  Single-cell dissection of the human brain vasculature , 2022, Nature.

[20]  A. Di Polo,et al.  Pericyte dysfunction and loss of interpericyte tunneling nanotubes promote neurovascular deficits in glaucoma , 2022, Proceedings of the National Academy of Sciences.

[21]  J. Wardlaw,et al.  Blood–brain barrier link to human cognitive impairment and Alzheimer’s disease , 2022, Nature Cardiovascular Research.

[22]  M. Lawton,et al.  A single-cell atlas of the normal and malformed human brain vasculature , 2022, Science.

[23]  V. Sothilingam,et al.  Mural Cell SRF Controls Pericyte Migration, Vessel Patterning and Blood Flow , 2021, bioRxiv.

[24]  N. Lawson,et al.  Integrated molecular analysis identifies a conserved pericyte gene signature in zebrafish. , 2021, Development.

[25]  C. Betsholtz,et al.  Adult-induced genetic ablation distinguishes PDGFB roles in blood-brain barrier maintenance and development , 2021, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[26]  David A Hartmann,et al.  Pericyte Control of Blood Flow Across Microvascular Zones in the Central Nervous System. , 2021, Annual review of physiology.

[27]  Minghui Wang,et al.  Hexokinase 2-driven glycolysis in pericytes activates their contractility leading to tumor blood vessel abnormalities , 2021, Nature Communications.

[28]  A. Nouet,et al.  Somatic PIK3CA Mutations in Sporadic Cerebral Cavernous Malformations. , 2021, The New England journal of medicine.

[29]  S. Carmichael,et al.  Heart and Brain Pericytes Exhibit a Pro-Fibrotic Response After Vascular Injury. , 2021, Circulation research.

[30]  G. Andelfinger,et al.  Specialized endothelial tip cells guide neuroretina vascularization and blood-retina-barrier formation , 2021, Developmental cell.

[31]  P. Carmeliet,et al.  Tumor vessel co-option probed by single-cell analysis. , 2021, Cell reports.

[32]  Cheng Huang,et al.  The Emerging Roles of Pericytes in Modulating Tumor Microenvironment , 2021, Frontiers in Cell and Developmental Biology.

[33]  Kai-Florian Storch,et al.  Leptin receptor-expressing pericytes mediate access of hypothalamic feeding centers to circulating leptin. , 2021, Cell metabolism.

[34]  B. Marsden,et al.  High-resolution 3D imaging uncovers organ-specific vascular control of tissue aging , 2021, Science Advances.

[35]  Liqun He,et al.  Single-Cell Analysis of Blood-Brain Barrier Response to Pericyte Loss. , 2020, Circulation research.

[36]  Junedh M. Amrute,et al.  Spatial multi-omic map of human myocardial infarction , 2020, Nature.

[37]  Victor G. Puelles,et al.  Decoding myofibroblast origins in human kidney fibrosis , 2020, Nature.

[38]  T. Wynn,et al.  Fibrosis: from mechanisms to medicines , 2020, Nature.

[39]  A. Di Polo,et al.  Interpericyte tunnelling nanotubes regulate neurovascular coupling , 2020, Nature.

[40]  J. Björkegren,et al.  Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination , 2020, Nature Communications.

[41]  Kai-Chien Yang,et al.  Methylation in pericytes after acute injury promotes chronic kidney disease. , 2020, The Journal of clinical investigation.

[42]  G. Koh,et al.  Biological functions of lymphatic vessels , 2020, Science.

[43]  Chenghua Gu,et al.  Neuronal regulation of the blood–brain barrier and neurovascular coupling , 2020, Nature Reviews Neuroscience.

[44]  A. Carracedo,et al.  Phosphoinositide 3-Kinase–Regulated Pericyte Maturation Governs Vascular Remodeling , 2020, Circulation.

[45]  J. Gribben,et al.  Cancer Burden Is Controlled by Mural Cell-β3-Integrin Regulated Crosstalk with Tumor Cells , 2020, Cell.

[46]  Y. Cho,et al.  Lineage-dependent gene expression programs influence the immune landscape of colorectal cancer , 2020, Nature Genetics.

[47]  O. Lindvall,et al.  Pericyte-derived fibrotic scarring is conserved across diverse central nervous system lesions , 2020, Nature Communications.

[48]  Qin Jiang,et al.  Circular RNA-ZNF532 regulates diabetes-induced retinal pericyte degeneration and vascular dysfunction. , 2020, The Journal of clinical investigation.

[49]  Bruce A. Corliss,et al.  Pericyte Bridges in Homeostasis and Hyperglycemia , 2020, Diabetes.

[50]  A. Fagan,et al.  APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline , 2020, Nature.

[51]  Peiwei Huangyang,et al.  FBP1 loss disrupts liver metabolism and promotes tumourigenesis through a hepatic stellate cell senescence secretome , 2020, Nature Cell Biology.

[52]  David A Hartmann,et al.  Brain capillary pericytes exert a substantial but slow influence on blood flow , 2020, Nature Neuroscience.

[53]  Jean-Frédéric Gerbeau,et al.  Reducing Hypermuscularization of the Transitional Segment Between Arterioles and Capillaries Protects Against Spontaneous Intracerebral Hemorrhage , 2020, Circulation.

[54]  A. Reynolds,et al.  Vessel co-option and resistance to anti-angiogenic therapy , 2019, Angiogenesis.

[55]  M. Graupera,et al.  Revisiting PI3-kinase signalling in angiogenesis , 2019, Vascular biology.

[56]  M. Roth,et al.  Parenchymal pericytes are not the major contributor of extracellular matrix in the fibrotic scar after stroke in male mice , 2019, Journal of neuroscience research.

[57]  C. Ponting,et al.  Single-Cell Transcriptomics Uncovers Zonation of Function in the Mesenchyme during Liver Fibrosis , 2019, Cell reports.

[58]  U. Lendahl,et al.  Emerging links between cerebrovascular and neurodegenerative diseases—a special role for pericytes , 2019, EMBO reports.

[59]  A. Cuervo,et al.  Glioblastoma ablates pericytes antitumor immune function through aberrant up-regulation of chaperone-mediated autophagy , 2019, Proceedings of the National Academy of Sciences.

[60]  Irving L. Weissman,et al.  A molecular cell atlas of the human lung from single cell RNA sequencing , 2019, Nature.

[61]  M. Bixel,et al.  Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes , 2019, Nature Communications.

[62]  Mikko T. Huuskonen,et al.  Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss , 2019, Nature Neuroscience.

[63]  B. Becher,et al.  Pericytes regulate vascular immune homeostasis in the CNS , 2019, bioRxiv.

[64]  N. Frangogiannis,et al.  Pericytes in the infarcted heart , 2019, Vascular biology.

[65]  R. Jain,et al.  Normalizing Function of Tumor Vessels: Progress, Opportunities, and Challenges. , 2019, Annual review of physiology.

[66]  A. Fagan,et al.  Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction , 2018, Nature Medicine.

[67]  S. Weatherbee,et al.  Pericyte ALK5/TIMP3 Axis Contributes to Endothelial Morphogenesis in the Developing Brain. , 2018, Developmental cell.

[68]  Quin F. Wills,et al.  Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease , 2018, Cell.

[69]  Xiang Yu,et al.  PDGFRβ Cells Rapidly Relay Inflammatory Signal from the Circulatory System to Neurons via Chemokine CCL2 , 2018, Neuron.

[70]  R. Adams,et al.  NCK-dependent pericyte migration promotes pathological neovascularization in ischemic retinopathy , 2018, Nature Communications.

[71]  P. Carmeliet,et al.  Phenotype molding of stromal cells in the lung tumor microenvironment , 2018, Nature Medicine.

[72]  D. Attwell,et al.  Amyloid β oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes , 2019, Science.

[73]  J. Wrana,et al.  Pulmonary pericytes regulate lung morphogenesis , 2018, Nature Communications.

[74]  H. Augustin,et al.  Microvascular Mural Cell Organotypic Heterogeneity and Functional Plasticity. , 2018, Trends in cell biology.

[75]  M. Carlén,et al.  Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury , 2018, Cell.

[76]  Koji Ando,et al.  A molecular atlas of cell types and zonation in the brain vasculature , 2018, Nature.

[77]  Berislav V. Zlokovic,et al.  Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders , 2018, Nature Reviews Neurology.

[78]  David A Hartmann,et al.  Dynamic Remodeling of Pericytes In Vivo Maintains Capillary Coverage in the Adult Mouse Brain. , 2018, Cell reports.

[79]  R. Adams,et al.  Pericytes regulate VEGF-induced endothelial sprouting through VEGFR1 , 2017, Nature Communications.

[80]  Fuquan Yang,et al.  CD146 coordinates brain endothelial cell–pericyte communication for blood–brain barrier development , 2017, Proceedings of the National Academy of Sciences.

[81]  L. Kim,et al.  Therapeutic antibody targeting of Notch3 signaling prevents mural cell loss in CADASIL , 2017, The Journal of experimental medicine.

[82]  Kshitij Srivastava,et al.  Pericyte-expressed Tie2 controls angiogenesis and vessel maturation , 2017, Nature Communications.

[83]  H. Augustin,et al.  Plastic roles of pericytes in the blood–retinal barrier , 2017, Nature Communications.

[84]  E. Masliah,et al.  Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo. , 2017, Cell stem cell.

[85]  Akiyoshi Uemura,et al.  Sustained inflammation after pericyte depletion induces irreversible blood-retina barrier breakdown. , 2017, JCI insight.

[86]  J. Hartman,et al.  Pericyte–fibroblast transition promotes tumor growth and metastasis , 2016, Proceedings of the National Academy of Sciences.

[87]  B. Aronow,et al.  Genetic lineage tracing defines myofibroblast origin and function in the injured heart , 2016, Nature Communications.

[88]  Jaime Grutzendler,et al.  Regional Blood Flow in the Normal and Ischemic Brain Is Controlled by Arteriolar Smooth Muscle Cell Contractility and Not by Capillary Pericytes , 2015, Neuron.

[89]  H. Okano,et al.  Novel overgrowth syndrome phenotype due to recurrent de novo PDGFRB mutation. , 2015, The Journal of pediatrics.

[90]  Xiwei Shan,et al.  The Extracellular Matrix Protein Laminin α2 Regulates the Maturation and Function of the Blood–Brain Barrier , 2014, The Journal of Neuroscience.

[91]  D. Attwell,et al.  Capillary pericytes regulate cerebral blood flow in health and disease , 2014, Nature.

[92]  L. Defebvre,et al.  Mutation of the PDGFRB gene as a cause of idiopathic basal ganglia calcification , 2013, Neurology.

[93]  Robert Pless,et al.  Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and 'instruct' them with pattern-recognition and motility programs , 2012, Nature Immunology.

[94]  Holger Gerhardt,et al.  Basic and Therapeutic Aspects of Angiogenesis , 2011, Cell.

[95]  C. Betsholtz,et al.  Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. , 2011, Developmental cell.

[96]  Bengt R. Johansson,et al.  Pericytes regulate the blood–brain barrier , 2010, Nature.

[97]  B. Barres,et al.  Pericytes are required for blood–brain barrier integrity during embryogenesis , 2010, Nature.

[98]  C. Betsholtz,et al.  The absence of pericytes does not increase the sensitivity of tumor vasculature to vascular endothelial growth factor-A blockade. , 2010, Cancer research.

[99]  Fredrik Lanner,et al.  Notch Signaling Regulates Platelet-Derived Growth Factor Receptor-β Expression in Vascular Smooth Muscle Cells , 2008, Circulation research.

[100]  Z. Werb,et al.  PDGFRβ+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival , 2005, Nature Cell Biology.

[101]  Rakesh K Jain,et al.  Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. , 2002, The American journal of pathology.

[102]  J. Weissenbach,et al.  Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia , 1996, Nature.