THE MASS–RADIUS RELATION FOR STAR-FORMING GALAXIES AT z ∼ 1.5–3.0

We present early results from a Hubble Space Telescope WFC3/IR imaging survey of star-forming galaxies in the redshift range 1.5 < z < 3.0. When complete, this survey will consist of 42 orbits of F160W imaging distributed amongst 10 survey fields on the line of sight to bright background QSOs, covering 65 arcmin2 to a depth of 27.9 AB with a point-spread function FWHM of 0.″18. In this contribution, we use a subset of these fields to explore the evolution of the galactic stellar mass–radius relation for a magnitude-limited sample of 102 spectroscopically confirmed star-forming galaxies (〈SFR〉 ∼ 30 M☉ yr−1) with stellar mass M* ∼ 1010 M☉. Although the light profile of these galaxies often has an irregular, multi-component morphology, it is typically possible to describe the brightest component with a Sersic profile of index n ∼ 1. The circularized half-light radius re of the brightest component is on average 〈re〉 = 1.66 ± 0.79 kpc (i.e., ∼50%–70% the size of local late-type galaxies with similar stellar mass), consistent with recent theoretical models that incorporate strong feedback from star-forming regions. The mean half-light radius increases with stellar mass and, at fixed stellar mass, evolves with cosmic time as ∼(1 + z)−1.42, suggesting that high-redshift star-forming galaxies may evolve onto the local stellar mass–radius relation by redshift z ∼ 1.

[1]  E. Gawiser,et al.  DIFFERENTIAL MORPHOLOGY BETWEEN REST-FRAME OPTICAL AND ULTRAVIOLET EMISSION FROM 1.5 < z < 3 STAR-FORMING GALAXIES , 2010, 1010.1525.

[2]  M. Mosleh,et al.  THE EVOLUTION OF THE MASS–SIZE RELATION TO z = 3.5 FOR UV-BRIGHT GALAXIES AND SUBMILLIMETER GALAXIES IN THE GOODS-NORTH FIELD , 2010, 1011.3042.

[3]  G. D. Illingworth,et al.  ACTIVE AND PASSIVE GALAXIES AT z ∼ 2: REST-FRAME OPTICAL MORPHOLOGIES WITH WFC3 , 2010, 1007.2422.

[4]  Douglas Scott,et al.  The Hubble Space Telescope GOODS NICMOS Survey: Overview and the Evolution of Massive Galaxies at 1.5 < z < 3 , 2010, 1010.1164.

[5]  D. Schiminovich,et al.  THE KINEMATICS OF IONIZED GAS IN LYMAN-BREAK ANALOGS AT z ∼ 0.2 , 2010, 1009.4934.

[6]  V. Springel,et al.  Feedback and the structure of simulated galaxies at redshift z=2 , 2010, 1004.5386.

[7]  C. Steidel,et al.  THE STRUCTURE AND KINEMATICS OF THE CIRCUMGALACTIC MEDIUM FROM FAR-ULTRAVIOLET SPECTRA OF z ≃ 2–3 GALAXIES , 2010, 1003.0679.

[8]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[9]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[10]  D. Wake,et al.  THE GROWTH OF MASSIVE GALAXIES SINCE z = 2 , 2009, 0912.0514.

[11]  D. Elbaz,et al.  VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS IN z = 1.5 DISK GALAXIES , 2009, 0911.2776.

[12]  D. Schiminovich,et al.  MORPHOLOGIES OF LOCAL LYMAN BREAK GALAXY ANALOGS. II. A COMPARISON WITH GALAXIES AT z ≃ 2–4 IN ACS AND WFC3 IMAGES OF THE HUBBLE ULTRA DEEP FIELD , 2009, 0911.1279.

[13]  S. Wuyts,et al.  THE SIZE-STAR FORMATION RELATION OF MASSIVE GALAXIES AT 1.5 < z < 2.5 , 2009, 0909.0750.

[14]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[15]  James E. Larkin,et al.  THE KILOPARSEC-SCALE KINEMATICS OF HIGH-REDSHIFT STAR-FORMING GALAXIES , 2009, 0901.2930.

[16]  G. Brammer,et al.  The NEWFIRM Medium-Band Survey: Filter Definitions and First Results , 2009, 0901.0551.

[17]  James E. Larkin,et al.  DYNAMICS OF GALACTIC DISKS AND MERGERS AT z ∼ 1.6: SPATIALLY RESOLVED SPECTROSCOPY WITH KECK LASER GUIDE STAR ADAPTIVE OPTICS , 2008, 0810.5599.

[18]  B. Madore,et al.  THE STAR FORMATION EFFICIENCY IN NEARBY GALAXIES: MEASURING WHERE GAS FORMS STARS EFFECTIVELY , 2008, 0810.2556.

[19]  Marijn Franx,et al.  Structure and Star Formation in Galaxies out to z = 3: Evidence for Surface Density Dependent Evolution and Upsizing , 2008, 0808.2642.

[20]  Garth D. Illingworth,et al.  Confirmation of the Remarkable Compactness of Massive Quiescent Galaxies at z ~ 2.3: Early-Type Galaxies Did not Form in a Simple Monolithic Collapse , 2008, 0802.4094.

[21]  David Schiminovich,et al.  Hubble Space Telescope Morphologies of Local Lyman Break Galaxy Analogs. I. Evidence for Starbursts Triggered by Merging , 2007, 0709.3304.

[22]  M. Franx,et al.  Hubble Space Telescope and Spitzer Imaging of Red and Blue Galaxies at z ~ 2.5: A Correlation between Size and Star Formation Activity from Compact Quiescent Galaxies to Extended Star-forming Galaxies , 2007, 0707.4484.

[23]  C. Steidel,et al.  The Physical Nature of Rest-UV Galaxy Morphology during the Peak Epoch of Galaxy Formation , 2006, astro-ph/0610693.

[24]  A. Szalay,et al.  The Diverse Properties of the Most Ultraviolet-Luminous Galaxies Discovered by GALEX , 2006, astro-ph/0609415.

[25]  S. M. Fall,et al.  The Morphological Diversities among Star-forming Galaxies at High Redshifts in the Great Observatories Origins Deep Survey , 2006, astro-ph/0606696.

[26]  C. Steidel,et al.  Hα Observations of a Large Sample of Galaxies at z ~ 2: Implications for Star Formation in High-Redshift Galaxies , 2006, astro-ph/0604388.

[27]  C. Steidel,et al.  The Stellar, Gas, and Dynamical Masses of Star-forming Galaxies at z ~ 2 , 2006, astro-ph/0604041.

[28]  Joel R. Primack,et al.  The Rest-Frame Far-Ultraviolet Morphologies of Star-Forming Galaxies at z ~ 1.5 and 4 , 2006 .

[29]  Chien Y. Peng,et al.  GEMS: The Surface Brightness and Surface Mass Density Evolution of Disk Galaxies , 2005 .

[30]  Leiden,et al.  Distant Red Galaxies in the Hubble Ultra Deep Field , 2005, astro-ph/0503454.

[31]  C. Conselice,et al.  The Assembly of Diversity in the Morphologies and Stellar Populations of High-Redshift Galaxies , 2005, astro-ph/0501088.

[32]  A. Szalay,et al.  The Properties of Ultraviolet-luminous Galaxies at the Current Epoch , 2004, astro-ph/0412577.

[33]  Casey Papovich,et al.  The Luminosity, Stellar Mass, and Number Density Evolution of Field Galaxies of Known Morphology from z = 0.5 to 3 , 2004, astro-ph/0405001.

[34]  M. Pettini,et al.  The Spatial Clustering of Star-forming Galaxies at Redshifts 1.4 ≲ z ≲ 3.5 , 2004, astro-ph/0410165.

[35]  S. M. Fall,et al.  The Evolution of Disk Galaxies in the GOODS-South Field: Number Densities and Size Distribution , 2004, astro-ph/0401483.

[36]  M. Pettini,et al.  A Survey of Star-forming Galaxies in the 1.4 ≲ z ≲ 2.5 Redshift Desert: Overview , 2004, astro-ph/0401439.

[37]  Max Pettini,et al.  Optical Selection of Star-forming Galaxies at Redshifts 1 < z < 3 , 2004, astro-ph/0401445.

[38]  S. Ravindranath,et al.  Observing the Formation of the Hubble Sequence in the Great Observatories Origins Deep Survey , 2003, astro-ph/0309039.

[39]  M. Giavalisco,et al.  Lyman Break Galaxies at Redshift z ~ 3: Survey Description and Full Data Set , 2003, astro-ph/0305378.

[40]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[41]  J. Brinkmann,et al.  The size distribution of galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0301527.

[42]  S. Arribas,et al.  The 2002 HST Calibration Workshop, Hubble after the installation of the ACS and the NICMOS cooling system : proceedings of a workshop held at the Space Telescope Science Institute, Baltimore, Maryland, October 17 and 18, 2002 , 2002 .

[43]  Massimo Stiavelli,et al.  WFPC2 Observations of the Hubble Deep Field South , 2000, astro-ph/0010245.

[44]  Shude Mao,et al.  The formation of galactic discs , 1997 .

[45]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[46]  B. Santiago,et al.  Galaxy morphology to I = 25 mag in the Hubble Deep Field , 1996, astro-ph/9602044.