Micro-assembly and modeling of the liquid microworld : the PRONOMIA project

This paper presents an overview of the French research program PRONOMIA which deals with new methods for robotic micromanipulation and especially on submerged micromanipulation. During microscale object manipulation, contact (pull-off) forces and non-contact (capillary, van der Waals, and electrostatic) forces determine the behavior of the micro-objects rather than the inertial forces. This article introduces a review of the major differences between dry and submerged micromanipulations and gives an experimental analysis of the physical phenomena at a microscopic scale in dry and liquid media. New submerged microhandling strategies is necessary to perform micromanipulation in a liquid. Two solutions are proposed in this article which use a freeze gripper and a dielectrophoretic gripper. Finally, microassembly and biological applications are presented.

[1]  Heikki N. Koivo,et al.  Ambient environmental effects in micro/nano handling , 2004 .

[2]  W. Cleghorn,et al.  Microassembly of 3-D microstructures using a compliant, passive microgripper , 2004, Journal of Microelectromechanical Systems.

[3]  J. Israelachvili Intermolecular and surface forces , 1985 .

[4]  L. Lee The Chemistry and Physics of Solid Adhesion , 1991 .

[5]  Joel Voldman,et al.  Dielectrophoretic traps for single-particle patterning. , 2005, Biophysical journal.

[6]  Y Rollot,et al.  Micro-robotics : a Dynamical Model of Micromanipulation by Adhesion , .

[7]  Michaël Gauthier,et al.  Submerged Freeze Gripper to Manipulate Micro-objects , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Jan Peirs,et al.  Design of micromechatronic systems: scale laws, technologies, and medical applications , 2001 .

[9]  Stéphane Régnier,et al.  Manipulation of micro-objects using adhesion forces and dynamical effects , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[10]  Lixin Dong,et al.  Dielectrophoretic micro/nanoassembly with microtweezers and nanoelectrodes , 2005, ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005..

[11]  Cédric Clévy,et al.  Comparison between micro-objects manipulations in dry and liquid mediums , 2005, 2005 International Symposium on Computational Intelligence in Robotics and Automation.

[12]  Roe-Hoan Yoon,et al.  A study of hydrophobic coagulation , 1990 .

[13]  Roe-Hoan Yoon,et al.  The role of hydrophobia interactions in coagulation , 1989 .

[14]  A. D. McLachlan,et al.  Three-body dispersion forces , 1963 .

[15]  Ronald S. Fearing,et al.  A Planar Milli-Robot System on an Air Bearing , 1996 .

[16]  Y. Huang,et al.  Dielectrophoretic separation of cancer cells from blood , 1995, IAS '95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting.

[17]  N. Chaillet,et al.  Dynamic modelling of a submerged freeze microgripper using a thermal network , 2007, 2007 IEEE/ASME international conference on advanced intelligent mechatronics.

[18]  A. Adamson Physical chemistry of surfaces , 1960 .

[19]  T. Udeshi,et al.  Assembly sequence planning for automated micro assembly , 2005, (ISATP 2005). The 6th IEEE International Symposium on Assembly and Task Planning: From Nano to Macro Assembly and Manufacturing, 2005..

[20]  George M. Whitesides,et al.  Beyond molecules: Self-assembly of mesoscopic and macroscopic components , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  D. Maugis Adhesion of spheres : the JKR-DMT transition using a dugdale model , 1992 .

[22]  Yves Rollot Micro-manipulations par adhesion : modelisations dynamiques et experimentations , 2000 .

[23]  Peter R. C. Gascoyne,et al.  Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments , 2004, Proceedings of the IEEE.

[24]  Michaël Gauthier,et al.  A Submerged Freeze Microgripper for Micromanipulations , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[25]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[26]  T. Camesano,et al.  Role of ionic strength on the relationship of biopolymer conformation, DLVO contributions, and steric interactions to bioadhesion of Pseudomonas putida KT2442. , 2003, Biomacromolecules.

[27]  R. A. Bowling,et al.  A Theoretical Review of Particle Adhesion , 1988 .

[28]  D.S. Haliyo,et al.  Advanced applications using [mu]MAD, the adhesion based dynamic micro-manipulator , 2003, Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003).

[29]  Michaël Gauthier,et al.  Micro-manipulation of silicate micro-sized particles for biological applications , 2008 .

[30]  Michaël Gauthier,et al.  Capillary Force Disturbances on a Partially Submerged Cylindrical Micromanipulator , 2007, IEEE Transactions on Robotics.

[31]  Dominiek Reynaerts,et al.  Assembly of Microsystems , 2000 .

[32]  Francois Creuzet,et al.  Atomic force microscopy for local characterization of surface acid-base properties , 1993 .

[33]  Metin Sitti,et al.  Teleoperated touch feedback from the surfaces at the nanoscale: modeling and experiments , 2003 .

[34]  Richard Phillips Feynman,et al.  Infinitesimal machinery , 1993 .

[35]  Hiroyuki Fujita,et al.  Positioning living cells on a high-density electrode array by negative dielectrophoresis , 2003 .

[36]  Johnson,et al.  An Adhesion Map for the Contact of Elastic Spheres , 1997, Journal of colloid and interface science.