Deformable 3d shape retrieval using a spectral geometric descriptor

In this paper, we propose a deformable 3D shape matching and retrieval approach using a spectral skeleton that encodes nonrigid object structures. This spectral skeleton is constructed from the second eigenfunction of the Laplace-Beltrami operator defined on the surface of a 3D shape, and thus it is invariant to isometric transformations. In addition to its intrinsic property, our proposed shape descriptor is compact, robust to noise, discriminative, and efficient to compute. We also present a graph matching framework by comparing the shortest paths between skeleton endpoints. Extensive experimental results demonstrate the feasibility of the proposed shape retrieval approach on three standard benchmarks of nonrigid 3D shapes.

[1]  Daniela Giorgi,et al.  Reeb graphs for shape analysis and applications , 2008, Theor. Comput. Sci..

[2]  Masaki Hilaga,et al.  Topological Modeling for Visualization , 1997 .

[3]  Valerio Pascucci,et al.  Robust on-line computation of Reeb graphs: simplicity and speed , 2007, SIGGRAPH 2007.

[4]  D. Cohen-Or,et al.  Curve skeleton extraction from incomplete point cloud , 2009, SIGGRAPH 2009.

[5]  A. Ben Hamza,et al.  Information-theoretic hashing of 3D objects using spectral graph theory , 2009, Expert Syst. Appl..

[6]  Ralph R. Martin,et al.  Non-rigid 3D Shape Retrieval , 2015, 3DOR@Eurographics.

[7]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[8]  Wenyu Liu,et al.  Skeleton Pruning by Contour Partitioning with Discrete Curve Evolution , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  S. Rosenberg The Laplacian on a Riemannian Manifold: The Laplacian on a Riemannian Manifold , 1997 .

[10]  A. Ben Hamza,et al.  Geodesic matching of triangulated surfaces , 2006, IEEE Transactions on Image Processing.

[11]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[12]  M. Fatih Demirci,et al.  3D object retrieval using many-to-many matching of curve skeletons , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[13]  Michael I. Miller,et al.  Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator , 2006, IEEE Transactions on Medical Imaging.

[14]  A. Ben Hamza,et al.  Spatially aggregating spectral descriptors for nonrigid 3D shape retrieval: a comparative survey , 2013, Multimedia Systems.

[15]  Hans-Peter Kriegel,et al.  3D Shape Histograms for Similarity Search and Classification in Spatial Databases , 1999, SSD.

[16]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[17]  Aly A. Farag,et al.  Variational Curve Skeletons Using Gradient Vector Flow , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[19]  A. Ben Hamza,et al.  Geodesic Object Representation and Recognition , 2003, DGCI.

[20]  Thomas A. Funkhouser,et al.  A Comparison of Text and Shape Matching for Retrieval of Online 3 D Models with statistical significance testing , 2022 .

[21]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[22]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.

[23]  A. Ben Hamza,et al.  Geometric Methods in Signal and Image Analysis: References , 2015 .

[24]  Laurent D. Cohen,et al.  Matching 2D and 3D articulated shapes using the eccentricity transform , 2011, Comput. Vis. Image Underst..

[25]  Arthur W. Toga,et al.  Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[26]  Longin Jan Latecki,et al.  Path Similarity Skeleton Graph Matching , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Moo K. Chung,et al.  Diffusion smoothing on brain surface via finite element method , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[28]  Ming Ouhyoung,et al.  On Visual Similarity Based 3D Model Retrieval , 2003, Comput. Graph. Forum.

[29]  Haibin Ling,et al.  Shape Classification Using the Inner-Distance , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Mohamed Daoudi,et al.  Partial 3D Shape Retrieval by Reeb Pattern Unfolding , 2009, Comput. Graph. Forum.

[31]  David L. Webb,et al.  You Can't Hear the Shape of a Drum , 1996 .

[32]  Rasmus Larsen,et al.  Shape Analysis Using the Auto Diffusion Function , 2009 .

[33]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[34]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[35]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[36]  Ali Shokoufandeh,et al.  Shock Graphs and Shape Matching , 1998, International Journal of Computer Vision.

[37]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[38]  Ming Zhong,et al.  Sparse approximation of 3D shapes via spectral graph wavelets , 2014, The Visual Computer.

[39]  I. Holopainen Riemannian Geometry , 1927, Nature.

[40]  A. Ben Hamza,et al.  A multiresolution descriptor for deformable 3D shape retrieval , 2013, The Visual Computer.

[41]  Giuseppe Patanè,et al.  A Minimal Contouring Approach to the Computation of the Reeb Graph , 2009, IEEE Transactions on Visualization and Computer Graphics.

[42]  Martin Reuter,et al.  Hierarchical Shape Segmentation and Registration via Topological Features of Laplace-Beltrami Eigenfunctions , 2010, International Journal of Computer Vision.

[43]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[44]  Tosiyasu L. Kunii,et al.  Surface coding based on Morse theory , 1991, IEEE Computer Graphics and Applications.

[45]  Yee-Hong Yang,et al.  Skeletonization : An Electrostatic Field-Based Approach 1 , 1996 .

[46]  Djamila Aouada,et al.  Squigraphs for Fine and Compact Modeling of 3-D Shapes , 2010, IEEE Transactions on Image Processing.

[47]  Karen K. Uhlenbeck Generic Properties of Eigenfunctions , 1976 .

[48]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[49]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[50]  M. Fatih Demirci,et al.  Object Recognition as Many-to-Many Feature Matching , 2006, International Journal of Computer Vision.

[51]  J. Hart,et al.  Fair morse functions for extracting the topological structure of a surface mesh , 2004, SIGGRAPH 2004.

[52]  Ali Shokoufandeh,et al.  Retrieving articulated 3-D models using medial surfaces , 2008, Machine Vision and Applications.

[53]  A. Ben Hamza,et al.  Reeb graph path dissimilarity for 3D object matching and retrieval , 2011, The Visual Computer.

[54]  Claudio Perez Tamargo Can one hear the shape of a drum , 2008 .

[55]  E. Kreyszig Introduction to Differential Geometry and Riemannian Geometry , 1968 .