A nonparametric multivariate multisample test based on data depth

: In this paper, we construct a family of nonparametric mul- tivariate multisample tests based on depth rankings. These tests are of Kruskal-Wallis type in the sense that the samples are variously ordered. However, unlike the Kruskal-Wallis test, these tests are based upon a depth ranking using a statistical depth function such as the halfspace depth or the Mahalanobis depth, etc. The types of tests we propose are adapted to the depth function that is most appropriate for the application. Under the null hypothesis that all samples come from the same distribution, we show that the test statistic asymptotically has a chi-square distribution. Some comparisons of power are made with the Hotelling T 2 , and the test of Choi and Marden (1997). Our test is particularly recommended when the data are of unknown distribution type where there is some evidence that the density contours are not elliptical. However, when the data are normally distributed, we often obtain high relative power.

[1]  C. Small,et al.  Data depth‐based nonparametric scale tests , 2011 .

[2]  Xuming He,et al.  On the limiting distributions of multivariate depth-based rank sum statistics and related tests , 2006, 0708.0167.

[3]  J. Hüsler,et al.  Multivariate nonparametric tests in a randomized complete block design , 2003 .

[4]  Regina Y. Liu,et al.  Rank tests for multivariate scale difference based on data depth , 2003, Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications.

[5]  Ronald H. Randles,et al.  NONPARAMETRIC TESTS FOR THE MULTIVARIATE MULTI-SAMPLE LOCATION PROBLEM , 2003 .

[6]  Ronald H. Randles,et al.  A Simpler, Affine-Invariant, Multivariate, Distribution-Free Sign Test , 2000 .

[7]  R. Serfling,et al.  General notions of statistical depth function , 2000 .

[8]  Philip H. Ramsey Nonparametric Statistical Methods , 1974, Technometrics.

[9]  P. Rousseeuw,et al.  The depth function of a population distribution , 1999, Metrika.

[10]  Hannu Oja,et al.  Affine Invariant Multivariate Sign and Rank Tests and Corresponding Estimates: a Review , 1999 .

[11]  Regina Y. Liu,et al.  Multivariate analysis by data depth: descriptive statistics, graphics and inference, (with discussion and a rejoinder by Liu and Singh) , 1999 .

[12]  P. Rousseeuw,et al.  Halfspace Depth and Regression Depth Characterize the Empirical Distribution , 1999 .

[13]  Peter Rousseeuw,et al.  Computing location depth and regression depth in higher dimensions , 1998, Stat. Comput..

[14]  P. Rousseeuw,et al.  Constructing the bivariate Tukey median , 1998 .

[15]  Hannu Oja,et al.  OPERATING TRANSFORMATION RETRANSFORMATION ON SPATIAL MEDIAN AND ANGLE TEST , 1998 .

[16]  Hannu Oja,et al.  AFFINE INVARIANT MULTIVARIATE RANK TESTS FOR SEVERAL SAMPLES , 1998 .

[17]  J. Marden,et al.  An Approach to Multivariate Rank Tests in Multivariate Analysis of Variance , 1997 .

[18]  Hannu Oja,et al.  Affine-invariant multivariate one-sample signed-rank tests , 1997 .

[19]  Kanwar Sen,et al.  A bivariate signed rank test for two sample location problem , 1997 .

[20]  P. Rousseeuw,et al.  Bivariate location depth , 1996 .

[21]  P. Rousseeuw,et al.  Computing depth contours of bivariate point clouds , 1996 .

[22]  Hannu Oja,et al.  Multivariate spatial sign and rank methods , 1995 .

[23]  C. Croux,et al.  Generalizing univariate signed rank statistics for testing and estimating a multivariate location parameter , 1995 .

[24]  Hannu Oja,et al.  Affine Invariant Multivariate Multisample Sign Tests , 1994 .

[25]  Hannu Oja,et al.  Affine Invariant Multivariate One‐Sample Sign Tests , 1994 .

[26]  P. Chaudhuri,et al.  Sign Tests in Multidimension: Inference Based on the Geometry of the Data Cloud , 1993 .

[27]  Regina Y. Liu,et al.  A Quality Index Based on Data Depth and Multivariate Rank Tests , 1993 .

[28]  D. Donoho,et al.  Breakdown Properties of Location Estimates Based on Halfspace Depth and Projected Outlyingness , 1992 .

[29]  C. Small A Survey of Multidimensional Medians , 1990 .

[30]  Ronald H. Randles,et al.  A Multivariate Signed-Rank Test for the One-Sample Location Problem , 1990 .

[31]  Ronald H. Randles,et al.  Multivariate rank tests for the two-sample location problem , 1990 .

[32]  R. Randles A Distribution-Free Multivariate Sign Test Based on Interdirections , 1989 .

[33]  Hannu Oja,et al.  Bivariate Sign Tests , 1989 .

[34]  C. Radhakrishna Rao,et al.  Methodology based on the L 1 -norm, in statistical inference , 1988 .

[35]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[36]  B. M. Brown,et al.  Affine Invariant Rank Methods in the Bivariate Location Model , 1987 .

[37]  Christopher G. Small Measures of centrality for multivariate and directional distributions , 1987 .

[38]  謙太郎 野間口,et al.  仮説に制約条件がある場合の Bivariate Sign Test , 1986 .

[39]  P. Rousseeuw Multivariate estimation with high breakdown point , 1985 .

[40]  H. Oja Descriptive Statistics for Multivariate Distributions , 1983 .

[41]  E. Jacquelin Dietz,et al.  Bivariate Nonparametric Tests for the One-Sample Location Problem , 1982 .

[42]  V. Barnett The Ordering of Multivariate Data , 1976 .

[43]  J. Tukey Mathematics and the Picturing of Data , 1975 .

[44]  J. C. Gower,et al.  Algorithm AS 78: The Mediancentre , 1974 .

[45]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1973 .

[46]  P. Sen,et al.  Nonparametric methods in multivariate analysis , 1974 .

[47]  Shoutir Kishore Chatterjee,et al.  A Bivariate Sign Test for Location , 1966 .

[48]  B. M. Bennett,et al.  On Multivariate Sign Tests , 1962 .

[49]  I. Blumen,et al.  A New Bivariate Sign Test , 1958 .

[50]  William Kruskal,et al.  A Nonparametric test for the Several Sample Problem , 1952 .

[51]  W. Kruskal,et al.  Use of Ranks in One-Criterion Variance Analysis , 1952 .

[52]  H. Hotelling A Generalized T Test and Measure of Multivariate Dispersion , 1951 .

[53]  D. Lawley A GENERALIZATION OF FISHER'S z TEST , 1938 .

[54]  P. Mahalanobis On the generalized distance in statistics , 1936 .