On stationary thermo-rheological viscous flows

[1]  S. Antontsev,et al.  Stopping a Viscous Fluid by a Feedback Dissipative Field: Thermal Effects without Phase Changing , 2005 .

[2]  M. Fuchs,et al.  A regularity result for stationary electrorheological fluids in two dimensions , 2004 .

[3]  Lars Diening,et al.  Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(·) and Wk,p(·) , 2004 .

[4]  Qihu Zhang,et al.  Existence of solutions for p(x) -Laplacian dirichlet problem , 2003 .

[5]  F. Ettwein,et al.  Existence of Strong Solutions for Electrorheological Fluids in Two Dimensions: Steady Dirichlet Problem , 2003 .

[6]  Giuseppe Mingione,et al.  Regularity Results for Stationary Electro-Rheological Fluids , 2002 .

[7]  Jesús Ildefonso Díaz Díaz,et al.  Energy Methods for Free Boundary Problems: Applications to Nonlinear PDEs and Fluid Mechanics , 2001 .

[8]  Gregory Seregin,et al.  Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids , 2001 .

[9]  M. Ruzicka,et al.  Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .

[10]  D. E. Edmunds,et al.  On Lp(x)norms , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  J. Rodrigues,et al.  On the stationary Boussinesq-Stefan problem with constitutive power-laws , 1998 .

[12]  Zhikov On Lavrentiev's Phenomenon. , 1995 .

[13]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .