Dimension reduction strategies for analyzing global gene expression data with a response.

[1]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[2]  James R. Schott,et al.  Determining the Dimensionality in Sliced Inverse Regression , 1994 .

[3]  S. Velilla Assessing the Number of Linear Components in a General Regression Problem , 1998 .

[4]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[5]  D. Botstein,et al.  Singular value decomposition for genome-wide expression data processing and modeling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Christian A. Rees,et al.  Molecular portraits of human breast tumours , 2000, Nature.

[7]  Neal S. Holter,et al.  Fundamental patterns underlying gene expression profiles: simplicity from complexity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Ash A. Alizadeh,et al.  'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns , 2000, Genome Biology.

[9]  R. Cook,et al.  Sufficient Dimension Reduction and Graphics in Regression , 2002 .

[10]  S. Dudoit,et al.  Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data , 2002 .

[11]  Danh V. Nguyen,et al.  Tumor classification by partial least squares using microarray gene expression data , 2002, Bioinform..

[12]  R. Dennis Cook,et al.  Optimal sufficient dimension reduction in regressions with categorical predictors , 2002 .