Prediction and Analysis of Mechanical Properties of Low Carbon Steels Using Machine Learning

[1]  Amitava Choudhury The Role of Machine Learning Algorithms in Materials Science: A State of Art Review on Industry 4.0 , 2020, Archives of Computational Methods in Engineering.

[2]  Amitava Choudhury,et al.  Structure prediction of multi-principal element alloys using ensemble learning , 2019 .

[3]  Amitava Choudhury,et al.  Computer vision approach for phase identification from steel microstructure , 2019, Engineering Computations.

[4]  Chiho Kim,et al.  Machine learning in materials informatics: recent applications and prospects , 2017, npj Computational Materials.

[5]  Jonathan Rubin,et al.  An Ensemble Boosting Model for Predicting Transfer to the Pediatric Intensive Care Unit , 2017, Int. J. Medical Informatics.

[6]  Wei Chen,et al.  A Statistical Learning Framework for Materials Science: Application to Elastic Moduli of k-nary Inorganic Polycrystalline Compounds , 2016, Scientific Reports.

[7]  E. Kanca,et al.  Prediction of Mechanical Properties of Cold Rolled Steel Using Genetic Expression Programming , 2016 .

[8]  Logan T. Ward,et al.  A General-Purpose Machine Learning Framework for Predicting Properties of Inorganic Materials , 2016, 1606.09551.

[9]  Gholamreza Khalaj,et al.  Artificial neural networks for hardness prediction of HAZ with chemical composition and tensile test of X70 pipeline steels , 2015 .

[10]  A. Kermanpur,et al.  Effects of initial microstructure and thermomechanical processing parameters on microstructures and mechanical properties of ultrafine grained dual phase steels , 2014 .

[11]  D. Banabic,et al.  Influence of high deformation on the microstructure of low-carbon steel , 2014, International Journal of Minerals, Metallurgy, and Materials.

[12]  L. Zhuang,et al.  Effects of Rolling and Cooling Conditions on Microstructure and Mechanical Properties of Low Carbon Cold Heading Steel , 2012 .

[13]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[14]  Dierk Raabe,et al.  Prediction of cold rolling texture of steels using an Artificial Neural Network , 2009 .

[15]  I. Vasiliev,et al.  Computational study of the surface properties of aluminum nanoparticles , 2009 .

[16]  G. Krauss Steels: Processing, Structure, And Performance , 2005 .

[17]  Dierk Raabe,et al.  Microstructure and crystallographic texture of an ultrafine grained C-Mn steel and their evolution during warm deformation and annealing , 2005 .

[18]  Yuichiro Koizumi,et al.  Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite , 2002 .

[19]  P. Hodgson,et al.  Ultrafine ferrite in low carbon steel , 1999 .

[20]  N. Tsuji,et al.  Dynamic recrystallization of ferrite in interstitial free steel , 1997 .

[21]  H. L. Taylor,et al.  Properties and Applications of Low Carbon Martensitic Steel Sheets , 1969 .

[22]  Ahmad K. Jassim,et al.  Prediction of Hardness, Yield Strength and Tensile Strength for Single Roll Melt Spinning of 5083 Al-alloy Ribbons , 2016 .

[23]  Michael P. Short,et al.  Current Opinion in Solid State and Materials Science , 2013 .

[24]  Pavel Simecek,et al.  Prediction of mechanical properties of hot rolled steel products , 2007 .

[25]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.