Phase retrieval of sparse signals using optimization transfer and ADMM

We propose a reconstruction method for the phase retrieval problem prevalent in optics, crystallography, and other imaging applications. Our approach uses signal sparsity to provide robust reconstruction, even in the presence of outliers. Our method is multi-layered, involving multiple random initial conditions, convex majorization, variable splitting, and alternating directions method of multipliers (ADMM)-based implementation. Monte Carlo simulations demonstrate that our algorithm can correctly and robustly detect sparse signals from full and undersampled sets of squared-magnitude-only measurements, corrupted by additive noise or outliers.

[1]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[2]  Alexandre d'Aspremont,et al.  Phase recovery, MaxCut and complex semidefinite programming , 2012, Math. Program..

[3]  Thierry Blu,et al.  Monte-Carlo Sure: A Black-Box Optimization of Regularization Parameters for General Denoising Algorithms , 2008, IEEE Transactions on Image Processing.

[4]  Émilie Chouzenoux,et al.  A block coordinate variable metric forward–backward algorithm , 2016, Journal of Global Optimization.

[5]  Xiaodong Li,et al.  Sparse Signal Recovery from Quadratic Measurements via Convex Programming , 2012, SIAM J. Math. Anal..

[6]  James R Fienup,et al.  Phase retrieval algorithms: a personal tour [Invited]. , 2013, Applied optics.

[7]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[8]  Jeffrey A. Fessler,et al.  An Expanded Theoretical Treatment of Iteration-Dependent Majorize-Minimize Algorithms , 2007, IEEE Transactions on Image Processing.

[9]  D. Hunter,et al.  Optimization Transfer Using Surrogate Objective Functions , 2000 .

[10]  Chandra Sekhar Seelamantula,et al.  An iterative algorithm for phase retrieval with sparsity constraints: application to frequency domain optical coherence tomography , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[11]  Yonina C. Eldar,et al.  Sparsity Based Sub-wavelength Imaging with Partially Incoherent Light via Quadratic Compressed Sensing References and Links , 2022 .

[12]  Babak Hassibi,et al.  Recovery of sparse 1-D signals from the magnitudes of their Fourier transform , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[13]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[14]  Herbert A. Hauptman The Phase Problem of X-Ray Crystallography: Overview , 1997 .

[15]  A. Walther The Question of Phase Retrieval in Optics , 1963 .

[16]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[17]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[18]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[19]  Rick P. Millane,et al.  Phase retrieval in crystallography and optics , 1990 .

[20]  Herbert A. Hauptman,et al.  The phase problem of x-ray crystallography , 1983, Proceedings / Indian Academy of Sciences.

[21]  Yonina C. Eldar,et al.  Phase Retrieval with Application to Optical Imaging , 2014, ArXiv.

[22]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[23]  S. Sastry,et al.  Compressive Phase Retrieval From Squared Output Measurements Via Semidefinite Programming , 2011, 1111.6323.

[24]  Tatiana Latychevskaia,et al.  Novel Fourier-domain constraint for fast phase retrieval in coherent diffraction imaging. , 2011, Optics express.

[25]  Yonina C. Eldar,et al.  Phase Retrieval: Stability and Recovery Guarantees , 2012, ArXiv.

[26]  R. Gerchberg A practical algorithm for the determination of phase from image and diffraction plane pictures , 1972 .

[27]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[28]  Yonina C. Eldar,et al.  GESPAR: Efficient Phase Retrieval of Sparse Signals , 2013, IEEE Transactions on Signal Processing.

[29]  Jeffrey A. Fessler,et al.  Regularization Parameter Selection for Nonlinear Iterative Image Restoration and MRI Reconstruction Using GCV and SURE-Based Methods , 2012, IEEE Transactions on Image Processing.

[30]  J R Fienup,et al.  Phase retrieval algorithms: a comparison. , 1982, Applied optics.

[31]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[32]  Robert W. Harrison,et al.  Phase problem in crystallography , 1993 .