Transcription coupled nucleotide excision repair in Escherichia coli can be affected by changing the arginine at position 529 of the beta subunit of RNA polymerase.

[1]  N. Savery,et al.  Controlling the motor activity of a transcription-repair coupling factor: autoinhibition and the role of RNA polymerase , 2007, Nucleic acids research.

[2]  P. Cramer,et al.  CPD Damage Recognition by Transcribing RNA Polymerase II , 2007, Science.

[3]  N. Savery,et al.  The bacterial transcription repair coupling factor. , 2007, Current opinion in structural biology.

[4]  N. Savery,et al.  Structural Basis for Bacterial Transcription-Coupled DNA Repair , 2006, Cell.

[5]  K. Hopfner,et al.  Structural basis for transcription-coupled repair: the N terminus of Mfd resembles UvrB with degenerate ATPase motifs. , 2006, Journal of molecular biology.

[6]  P. Doetsch,et al.  RNA polymerase encounters with DNA damage: transcription-coupled repair or transcriptional mutagenesis? , 2006, Chemical reviews.

[7]  I. Mellon Transcription-coupled repair: a complex affair. , 2005, Mutation research.

[8]  B. Van Houten,et al.  'Close-fitting sleeves': DNA damage recognition by the UvrABC nuclease system. , 2005, Mutation research.

[9]  B. Van Houten,et al.  Structural insights into the first incision reaction during nucleotide excision repair , 2005, The EMBO journal.

[10]  A. Smith,et al.  RNA polymerase mutants defective in the initiation of transcription-coupled DNA repair , 2005, Nucleic acids research.

[11]  Peter D. Karp,et al.  EcoCyc: a comprehensive database resource for Escherichia coli , 2004, Nucleic Acids Res..

[12]  H. Handa,et al.  Blockage of RNA polymerase II at a cyclobutane pyrimidine dimer and 6-4 photoproduct. , 2004, Biochemical and biophysical research communications.

[13]  A. Smith,et al.  A DNA translocation motif in the bacterial transcription--repair coupling factor, Mfd. , 2003, Nucleic acids research.

[14]  Jeffrey H. Miller,et al.  Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. , 2003, DNA repair.

[15]  Jeffrey H. Miller,et al.  Escherichia coli strains (ndk) lacking nucleoside diphosphate kinase are powerful mutators for base substitutions and frameshifts in mismatch-repair-deficient strains. , 2002, Genetics.

[16]  Jeffrey W. Roberts,et al.  E. coli Transcription Repair Coupling Factor (Mfd Protein) Rescues Arrested Complexes by Promoting Forward Translocation , 2002, Cell.

[17]  J. Svejstrup Transcription: Mechanisms of transcription-coupled DNA repair , 2002, Nature Reviews Molecular Cell Biology.

[18]  Arkady Mustaev,et al.  Structural Mechanism for Rifampicin Inhibition of Bacterial RNA Polymerase , 2001, Cell.

[19]  P. Hanawalt,et al.  Structural Characterization of RNA Polymerase II Complexes Arrested by a Cyclobutane Pyrimidine Dimer in the Transcribed Strand of Template DNA* , 1999, The Journal of Biological Chemistry.

[20]  P. Hanawalt,et al.  Induction of the SOS Response Increases the Efficiency of Global Nucleotide Excision Repair of Cyclobutane Pyrimidine Dimers, but Not 6-4 Photoproducts, in UV-IrradiatedEscherichia coli , 1998, Journal of bacteriology.

[21]  I. Mellon,et al.  Products of DNA mismatch repair genes mutS and mutL are required for transcription-coupled nucleotide-excision repair of the lactose operon in Escherichia coli. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[22]  P. Hanawalt,et al.  Determination of Damage and Repair in Specific DNA Sequences , 1995 .

[23]  A. Sancar,et al.  Structure and Function of Transcription-Repair Coupling Factor , 1995, The Journal of Biological Chemistry.

[24]  A. Sancar,et al.  Structure and Function of Transcription-Repair Coupling Factor , 1995, The Journal of Biological Chemistry.

[25]  A. Sancar,et al.  Mechanisms of transcription-repair coupling and mutation frequency decline. , 1994, Microbiological reviews.

[26]  P. Hanawalt,et al.  Transcript cleavage by RNA polymerase II arrested by a cyclobutane pyrimidine dimer in the DNA template. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[27]  A. Sancar,et al.  Molecular mechanism of transcription-repair coupling. , 1993, Science.

[28]  Jeffrey H. Miller,et al.  A short course in bacterial genetics , 1992 .

[29]  A. Sancar,et al.  Gene- and strand-specific repair in vitro: partial purification of a transcription-repair coupling factor. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. Sancar,et al.  Transcription preferentially inhibits nucleotide excision repair of the template DNA strand in vitro. , 1990, The Journal of biological chemistry.

[31]  S. Maloy Experimental techniques in bacterial genetics , 1990 .

[32]  P. Hanawalt,et al.  Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand , 1989, Nature.

[33]  C. Gross,et al.  Characterization of the pleiotropic phenotypes of rifampin-resistant rpoB mutants of Escherichia coli , 1989, Journal of bacteriology.

[34]  C. Gross,et al.  Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. , 1988, Journal of molecular biology.

[35]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .