A direct approach to solving trajectory planning problems using genetic algorithms with dynamics considerations in complex environments

This paper presents a new genetic algorithm methodology to solve the trajectory planning problem. This methodology can obtain smooth trajectories for industrial robots in complex environments using a direct method. The algorithm simultaneously creates a collision-free trajectory between initial and final configurations as the robot moves. The presented method deals with the uncertainties associated with the unknown kinematic properties of intermediate via points since they are generated as the algorithm evolves looking for the solution. Additionally, the objective of this algorithm is to minimize the trajectory time, which guides the robot motion. The method has been applied successfully to the PUMA 560 robotic system. Four operational parameters (execution time, computational time, end-effector distance travelled and significant points distance travelled) have been computed to study and analyze the algorithm efficiency. The experimental results show that, the proposed optimization algorithm for the trajectory planning problem of an industrial robot is feasible.

[1]  Yuval Davidor,et al.  Genetic algorithms and robotics , 1991 .

[2]  R. Saravanan,et al.  Evolutionary trajectory planning for an industrial robot , 2010, Int. J. Autom. Comput..

[3]  Jan A. Snyman,et al.  Trajectory-planning through interpolation by overlapping cubic arcs and cubic splines , 2003 .

[4]  Marco Ceccarelli,et al.  A formulation for path planning of manipulators in complex environments by using adjacent configurations , 1996, Adv. Robotics.

[5]  Michael E. Wall,et al.  Galib: a c++ library of genetic algorithm components , 1996 .

[6]  John J. Craig Zhu,et al.  Introduction to robotics mechanics and control , 1991 .

[7]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[8]  Karim Abdel-Malek,et al.  Optimization-based trajectory planning of the human upper body , 2006, Robotica.

[9]  Aurelio Piazzi,et al.  Global minimum-jerk trajectory planning of robot manipulators , 2000, IEEE Trans. Ind. Electron..

[10]  Honghai Liu,et al.  Intelligent Robotics and Applications , 2014, Lecture Notes in Computer Science.

[11]  Aurelio Piazzi,et al.  A global optimization approach to trajectory planning for industrial robots , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[12]  Lianfang Tian,et al.  An effective robot trajectory planning method using a genetic algorithm , 2004 .

[13]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[14]  E. Croft,et al.  Smooth and time-optimal trajectory planning for industrial manipulators along specified paths , 2000 .

[15]  Martina Gorges-Schleuter,et al.  ASPARAGOS An Asynchronous Parallel Genetic Optimization Strategy , 1989, ICGA.

[16]  José António Tenreiro Machado,et al.  Manipulator trajectory planning using a MOEA , 2007, Appl. Soft Comput..

[17]  H. Lehtihet,et al.  Minimum cost trajectory planning for industrial robots , 2004 .

[18]  Fares J. Abu-Dakka Trajectory planning for industrial robot using genetic algorithms , 2011 .

[19]  Vicente Mata,et al.  Evolutionary Path Planning Algorithm for Industrial Robots , 2012, Adv. Robotics.

[20]  E. Bertolazzi,et al.  real-time motion planning for multibody systems , 2007 .

[21]  Yuval Davidor,et al.  Genetic Algorithms and Robotics - A Heuristic Strategy for Optimization , 1991, World Scientific Series in Robotics and Intelligent Systems.

[22]  Curtis Collins,et al.  Motion Planning for Redundant Manipulators Using a Floating Point Genetic Algorithm , 2003, J. Intell. Robotic Syst..

[23]  Elizabeth A. Croft,et al.  Jerk-bounded manipulator trajectory planning: design for real-time applications , 2003, IEEE Trans. Robotics Autom..

[24]  Ali M. S. Zalzala,et al.  An evolutionary planner for near time-optimal collision-free motion of multi-arm robotic manipulators , 1996 .

[25]  R. Saravanan,et al.  Evolutionary multi-criteria trajectory modeling of industrial robots in the presence of obstacles , 2009, Eng. Appl. Artif. Intell..

[26]  Vicente Mata,et al.  Evolutionary indirect approach to solving trajectory planning problem for industrial robots operating in workspaces with obstacles , 2013 .

[27]  Hong Hao,et al.  Robot path planning using genetic algorithms , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[28]  Paulo Moura Oliveira,et al.  An Evolutionary Approach to Robot Structure and Trajectory Optimization , .

[29]  M. K. Madrid,et al.  Planning of robot trajectories with genetic algorithms , 1999, Proceedings of the First Workshop on Robot Motion and Control. RoMoCo'99 (Cat. No.99EX353).

[30]  Vicente Mata,et al.  Trajectory planning in workspaces with obstacles taking into account the dynamic robot behaviour , 2006 .

[31]  Yu-Geng Xi,et al.  Optimum motion planning in joint space for robots using genetic algorithms , 1996, Robotics Auton. Syst..

[32]  Valder Steffen,et al.  Trajectory Modeling of Robot Manipulators in the Presence of Obstacles , 2001 .

[33]  Vicente Mata,et al.  Parallel-Populations Genetic Algorithm for the Optimization of Cubic Polynomial Joint Trajectories for Industrial Robots , 2011, ICIRA.

[34]  Raúl Rojas,et al.  Neural Networks - A Systematic Introduction , 1996 .

[35]  R. Saravanan,et al.  Evolutionary Minimum Cost Trajectory Planning for Industrial Robots , 2008, J. Intell. Robotic Syst..

[36]  Saeed Behzadipour,et al.  Time-optimal trajectory planning in cable-based manipulators , 2006, IEEE Transactions on Robotics.