Detonation Waves and Propulsion

The possibility of using a detonation wave as the key combustion system for supersonic propulsion is examined. A brief review of propagating detonations is provided first. This review emphasizes the unique and unstable nature of the coupling between reaction zone and shock waves that characterize detonations. The theory of idealized, steady, oblique detonation waves and their reaction zone structure are summarized. The evidence for the existence of stabilized or steady oblique detonations is discussed. Experiments with multiple layers of explosive and projectiles fired into explosive gases are examined. There are a variety of reasons that these previous studies have failed to produce stabilized detonations. A brief catalog of difficulties is provided and based on analogies with our knowledge of propagating detonations, a set of criteria are proposed for the existence and stability of stabilized detonations. The problems of initiation and instability are examined for the situation of a flow over a wedge.

[1]  Roger A. Dunlap,et al.  A Preliminary Study of the Application of Steady-State Detonative Combustion to a Reaction Engine , 1958 .

[2]  M. Y. Hussaini,et al.  Interaction of disturbances with an oblique detonation wave attached to a wedge , 1992 .

[3]  H. Lehr,et al.  Experiments on Shock-Induced Combustion , 1972 .

[4]  W. C. Reynolds,et al.  The Element Potential Method for Chemical Equilibrium Analysis : Implementation in the Interactive Program STANJAN, Version 3 , 1986 .

[5]  Andrew J. Majda,et al.  Theoretical and numerical structure for unstable one-dimensional detonations , 1991 .

[6]  W. H. Sargent Detonation Wave Hypersonic Ramjet , 1960 .

[7]  Wildon Fickett,et al.  Detonation in miniature , 1979 .

[8]  Elaine S. Oran,et al.  Numerical simulations of detonation transmission , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[9]  J. Hyde,et al.  Standing oblique detonation wave engine performance , 1987 .

[10]  F. W. Ruegg,et al.  A missile technique for the study of detonation waves. , 1962 .

[11]  R. Lindsay,et al.  Elements of gasdynamics , 1957 .

[12]  C. W. Kauffman,et al.  Diffraction and transmission of a detonation into a bounding explosive layer , 1988 .

[13]  V. V. Mitrofanov,et al.  THE STRUCTURE OF A DETONATION FRONT IN GASES , 1966 .

[14]  John B. Bdzil,et al.  Modeling two‐dimensional detonations with detonation shock dynamics , 1989 .

[15]  J. Nicholls,et al.  Studies in connection with stabilized gaseous detonation waves , 1958 .

[16]  Taras Atamanchuk,et al.  Hypersonic detonation wave powered lifting-propulsive bodies , 1991 .

[17]  I︠a︡. B. Zelʹdovich,et al.  Theory of detonation , 1960 .

[18]  P. A. Thompson,et al.  Compressible Fluid Dynamics , 1972 .

[19]  Gene P. Menees,et al.  Numerical simulations of oblique detonations in supersonic combustion chambers , 1989 .

[20]  T. J. Barber,et al.  Role of hydrogen/air chemistry in nozzle performance for a hypersonic propulsion system , 1993 .

[21]  Shmuel Eidelman,et al.  Review of Propulsion Applications and Numerical Simulations of the Pulsed Detonation Engine Concept , 1991 .

[22]  P. Rubins,et al.  Shock-induced supersonic combustion in a constant-area duct , 1965 .

[23]  J. Nicholls STANDING DETONATION WAVES , 1963 .

[24]  Joseph M. Powers,et al.  Approximate solutions for oblique detonations in the hypersonic limit , 1992 .

[25]  R. Strehlow,et al.  Experimental and analytical study of H sub 2-air reaction kinetics using a standing-wave normal shock. , 1969 .

[26]  L. AlpertR,et al.  Periodicity in exothermic hypersonic flows about blunt projectiles. , 1972 .

[27]  Donald Scott Stewart,et al.  Calculation of linear detonation instability: one-dimensional instability of plane detonation , 1990, Journal of Fluid Mechanics.

[28]  R. Gross,et al.  A Study of Supersonic Combustion , 1960 .

[29]  John Buckmaster The Structural Stability of Oblique Detonation Waves , 1990 .

[30]  J. Mcvey,et al.  Mechanism of Instabilities of Exothermic Hypersonic Blunt-Body Flows , 1971 .

[31]  George F. Carrier,et al.  Laser-Initiated Conical Detonation Wave for Supersonic Combustion , 1992 .

[32]  R. J. Kee,et al.  Chemkin-II : A Fortran Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics , 1991 .

[33]  John H. S. Lee,et al.  Dynamic Parameters of Gaseous Detonations , 1984 .

[34]  Andrew J. Majda,et al.  Theoretical and numerical structure for unstable two-dimensional detonations , 1992 .

[35]  R. P. Rhodes,et al.  Shock-induced combustion with oblique shocks- comparison of experiment and kinetic calculations , 1963 .

[36]  G. Eriksson,et al.  ChemSage—A computer program for the calculation of complex chemical equilibria , 1990 .

[37]  J. L. Lyman,et al.  Hydrogen/air combustion calculations - The chemical basis of efficiency in hypersonic flows , 1988 .

[38]  J. Sislian,et al.  On- and off-design performance analysis of hypersonic detonation wave ramjets , 1990 .

[40]  Joseph W. Humphrey,et al.  Morphology of standing oblique detonation waves , 1991 .

[41]  R. P. Rhodes,et al.  THE EFFECT OF HEAT RELEASE ON THE FLOW PARAMETERS IN SHOCK-INDUCED COMBUSTION , 1962 .

[42]  A. K. Oppenheim,et al.  Dynamic effects of autoignition centers for hydrogen and C1,2-hydrocarbon fuels , 1989 .

[43]  Thomas L. Jackson,et al.  Convection of a pattern of vorticity through a reacting shock wave , 1990 .

[44]  Sanford Gordon,et al.  Computer program for calculation of complex chemical equilibrium compositions , 1972 .

[45]  Gregory J. Wilson,et al.  Computation of unsteady shock-induced combustion using logarithmic species conservation equations , 1993 .

[46]  Charles K. Westbrook,et al.  Chemical kinetic prediction of critical parameters in gaseous detonations , 1982 .