Brief History of Early Lithium-Battery Development
暂无分享,去创建一个
Karim Zaghib | Andrea Paolella | Alain Mauger | K. Zaghib | A. Mauger | C. Julien | Andrea Paolella | M. V. Reddy | Mogalahalli V Reddy | Christian M Julien
[1] M. Dines. Intercalation of Metallocenes in the Layered Transition-Metal Dichalcogenides , 1975, Science.
[2] M. Whittingham,et al. Electrical Energy Storage and Intercalation Chemistry , 1976, Science.
[3] M. Armand,et al. Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects , 2019, Chem.
[4] W. S. Harris,et al. ELECTROCHEMICAL STUDIES IN CYCLIC ESTERS , 1958 .
[5] L. Trichet,et al. Les intercalaires Ax Ti S2 et Ax Zr S2. Structure et liaisons. (A = Li, Na, K, Rb, Cs) , 1974 .
[6]
John B. Goodenough,et al.
LixCoO2 (0
[7] C. Holmes,et al. The Lithium/Iodine-Polyvinylpyridine Pacemaker Battery - 35 years of Successful Clinical Use , 2007 .
[8] G. Rao,et al. Electrolysis method of intercalation of layered transition metal dichalcogenides , 1974 .
[9] M. Armand,et al. Graphite intercalation compounds as cathode materials , 1977 .
[10] M Cais,et al. Intercalation Complexes of Lewis Bases and Layered Sulfides: A Large Class of New Superconductors , 1971, Science.
[11] 마사히로 기쿠치,et al. Lithium ion rechargeable battery , 2006 .
[12] F. Trumbore. Niobium triselenide: A unique rechargeable positive electrode material , 1989 .
[13] B. Scrosati,et al. A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes , 1980 .
[14] M. Dines. Lithium intercalation via n-Butyllithium of the layered transition metal dichalcogenides , 1975 .
[15] J. Besenhard,et al. High energy density lithium cells: Part II. Cathodes and complete cells , 1976 .
[16] Lin Gu,et al. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries , 2013, Nature Communications.
[17] F. G. Keyes,et al. THE POTENTIAL OF THE LITHIUM ELECTRODE. , 1913 .
[18] Teófilo Rojo,et al. Editors' Choice—Review—Innovative Polymeric Materials for Better Rechargeable Batteries: Strategies from CIC Energigune , 2019, Journal of The Electrochemical Society.
[19] Karim Zaghib,et al. Mechanism of the Fe3+ Reduction at Low Temperature for LiFePO4 Synthesis from a Polymeric Additive , 2007 .
[20] M. Armand,et al. Polymer solid electrolytes: Stability domain , 1981 .
[21] D. Guérard,et al. Intercalation of lithium into graphite and other carbons , 1975 .
[22] Huilin Pan,et al. Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery , 2012 .
[23] John B. Goodenough,et al. Electrochemical extraction of lithium from LiMn2O4 , 1984 .
[24] R. R. Haering,et al. Structural destabilization induced by lithium intercalation in MoS2 and related compounds , 1983 .
[25]
John B. Goodenough,et al.
LixCoO2 (0
[26] P. Hagenmuller,et al. Sur de nouveaux bronzes oxygénés de formule NaχCoO2 (χ1). Le système cobalt-oxygène-sodium , 1973 .
[27] S. L. Johnson,et al. Rechargeable lithium-titanium disulphide cells of spirally-wound design , 1989 .
[28] J. Goodenough. Battery Components, Active Materials for , 2013 .
[29] C. Delmas,et al. Electrochemical and physical properties of the LixNi1$minus;yCoyO2 phases , 1992 .
[30] Michael M. Thackeray,et al. Spinel Anodes for Lithium‐Ion Batteries , 1994 .
[31] K. S. Nanjundaswamy,et al. Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .
[32] Michel Armand,et al. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.
[33] K. M. Abraham,et al. Practical rechargeable lithium batteries , 1989 .
[34] M. Whittingham,et al. The iron cyanide bronzes , 1972 .
[35] J. Besenhard,et al. High energy density lithium cellsPart I. Electrolytes and anodes , 1976 .
[36] J. Goodenough,et al. Tribute to Michel Armand: from Rocking Chair – Li-ion to Solid-State Lithium Batteries , 2020, Journal of The Electrochemical Society.
[37] J. Akridge,et al. Performance of Li/TiS2 solid state batteries using phosphorous chalcogenide network former glasses as solid electrolyte , 1988 .
[38] B. Steele,et al. Thermodynamic characterisation of non-stoichiometric titanium di-sulphide , 1976 .
[39] K. Zaghib,et al. Safe and fast-charging Li-ion battery with long shelf life for power applications , 2011 .
[40] R. Jasinski. High-energy batteries , 1967 .
[41] B. Steele,et al. Titanium disulphide: A solid solution electrode for sodium and lithium , 1976 .
[42] D. D. Yue,et al. Fast Ion Transport in Solids, Solid State Batteries and Devices , 1974 .
[43] Rachid Meziane,et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. , 2013, Nature materials.
[44] K. Takada. Solid-State Batteries with Oxide-Based Electrolytes , 2021 .
[45] J. Gabano,et al. D‐Size Lithium Cupric Sulfide Cells , 1972 .
[46] Tsutomu Ohzuku,et al. Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .
[47] Michel Armand,et al. Polymer solid electrolytes - an overview , 1983 .
[48] M. Armand,et al. Recent Progress on Organic Electrodes Materials for Rechargeable Batteries and Supercapacitors , 2019, Materials.
[49] M. Armand,et al. Improving the High-Temperature Resilience of LiMn2O4 Based Batteries: LiFNFSI an Effective Salt , 2012 .
[50] M. Armand,et al. A novel solid polymer electrolyte: Synthesis and characterization , 1991 .
[51] J. Akridge,et al. Solid state batteries using vitreous solid electrolytes , 1986 .
[52] G. Pistoia,et al. Lithium batteries : science and technology , 2003 .