Brief History of Early Lithium-Battery Development

Lithium batteries are electrochemical devices that are widely used as power sources. This history of their development focuses on the original development of lithium-ion batteries. In particular, we highlight the contributions of Professor Michel Armand related to the electrodes and electrolytes for lithium-ion batteries.

[1]  M. Dines Intercalation of Metallocenes in the Layered Transition-Metal Dichalcogenides , 1975, Science.

[2]  M. Whittingham,et al.  Electrical Energy Storage and Intercalation Chemistry , 1976, Science.

[3]  M. Armand,et al.  Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects , 2019, Chem.

[4]  W. S. Harris,et al.  ELECTROCHEMICAL STUDIES IN CYCLIC ESTERS , 1958 .

[5]  L. Trichet,et al.  Les intercalaires Ax Ti S2 et Ax Zr S2. Structure et liaisons. (A = Li, Na, K, Rb, Cs) , 1974 .

[6]  John B. Goodenough,et al.  LixCoO2 (0, 1981 .

[7]  C. Holmes,et al.  The Lithium/Iodine-Polyvinylpyridine Pacemaker Battery - 35 years of Successful Clinical Use , 2007 .

[8]  G. Rao,et al.  Electrolysis method of intercalation of layered transition metal dichalcogenides , 1974 .

[9]  M. Armand,et al.  Graphite intercalation compounds as cathode materials , 1977 .

[10]  M Cais,et al.  Intercalation Complexes of Lewis Bases and Layered Sulfides: A Large Class of New Superconductors , 1971, Science.

[11]  마사히로 기쿠치,et al.  Lithium ion rechargeable battery , 2006 .

[12]  F. Trumbore Niobium triselenide: A unique rechargeable positive electrode material , 1989 .

[13]  B. Scrosati,et al.  A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes , 1980 .

[14]  M. Dines Lithium intercalation via n-Butyllithium of the layered transition metal dichalcogenides , 1975 .

[15]  J. Besenhard,et al.  High energy density lithium cells: Part II. Cathodes and complete cells , 1976 .

[16]  Lin Gu,et al.  Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries , 2013, Nature Communications.

[17]  F. G. Keyes,et al.  THE POTENTIAL OF THE LITHIUM ELECTRODE. , 1913 .

[18]  Teófilo Rojo,et al.  Editors' Choice—Review—Innovative Polymeric Materials for Better Rechargeable Batteries: Strategies from CIC Energigune , 2019, Journal of The Electrochemical Society.

[19]  Karim Zaghib,et al.  Mechanism of the Fe3+ Reduction at Low Temperature for LiFePO4 Synthesis from a Polymeric Additive , 2007 .

[20]  M. Armand,et al.  Polymer solid electrolytes: Stability domain , 1981 .

[21]  D. Guérard,et al.  Intercalation of lithium into graphite and other carbons , 1975 .

[22]  Huilin Pan,et al.  Spinel lithium titanate (Li4Ti5O12) as novel anode material for room-temperature sodium-ion battery , 2012 .

[23]  John B. Goodenough,et al.  Electrochemical extraction of lithium from LiMn2O4 , 1984 .

[24]  R. R. Haering,et al.  Structural destabilization induced by lithium intercalation in MoS2 and related compounds , 1983 .

[25]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[26]  P. Hagenmuller,et al.  Sur de nouveaux bronzes oxygénés de formule NaχCoO2 (χ1). Le système cobalt-oxygène-sodium , 1973 .

[27]  S. L. Johnson,et al.  Rechargeable lithium-titanium disulphide cells of spirally-wound design , 1989 .

[28]  J. Goodenough Battery Components, Active Materials for , 2013 .

[29]  C. Delmas,et al.  Electrochemical and physical properties of the LixNi1$minus;yCoyO2 phases , 1992 .

[30]  Michael M. Thackeray,et al.  Spinel Anodes for Lithium‐Ion Batteries , 1994 .

[31]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[32]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[33]  K. M. Abraham,et al.  Practical rechargeable lithium batteries , 1989 .

[34]  M. Whittingham,et al.  The iron cyanide bronzes , 1972 .

[35]  J. Besenhard,et al.  High energy density lithium cellsPart I. Electrolytes and anodes , 1976 .

[36]  J. Goodenough,et al.  Tribute to Michel Armand: from Rocking Chair – Li-ion to Solid-State Lithium Batteries , 2020, Journal of The Electrochemical Society.

[37]  J. Akridge,et al.  Performance of Li/TiS2 solid state batteries using phosphorous chalcogenide network former glasses as solid electrolyte , 1988 .

[38]  B. Steele,et al.  Thermodynamic characterisation of non-stoichiometric titanium di-sulphide , 1976 .

[39]  K. Zaghib,et al.  Safe and fast-charging Li-ion battery with long shelf life for power applications , 2011 .

[40]  R. Jasinski High-energy batteries , 1967 .

[41]  B. Steele,et al.  Titanium disulphide: A solid solution electrode for sodium and lithium , 1976 .

[42]  D. D. Yue,et al.  Fast Ion Transport in Solids, Solid State Batteries and Devices , 1974 .

[43]  Rachid Meziane,et al.  Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. , 2013, Nature materials.

[44]  K. Takada Solid-State Batteries with Oxide-Based Electrolytes , 2021 .

[45]  J. Gabano,et al.  D‐Size Lithium Cupric Sulfide Cells , 1972 .

[46]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[47]  Michel Armand,et al.  Polymer solid electrolytes - an overview , 1983 .

[48]  M. Armand,et al.  Recent Progress on Organic Electrodes Materials for Rechargeable Batteries and Supercapacitors , 2019, Materials.

[49]  M. Armand,et al.  Improving the High-Temperature Resilience of LiMn2O4 Based Batteries: LiFNFSI an Effective Salt , 2012 .

[50]  M. Armand,et al.  A novel solid polymer electrolyte: Synthesis and characterization , 1991 .

[51]  J. Akridge,et al.  Solid state batteries using vitreous solid electrolytes , 1986 .

[52]  G. Pistoia,et al.  Lithium batteries : science and technology , 2003 .