Ultrafast dynamics of surface-enhanced Raman scattering due to Au nanostructures.

Ultrafast dynamics of surface-enhanced Raman scattering (SERS) was investigated at cleaved graphite surfaces bearing deposited gold (Au) nanostructures (∼10 nm in diameter) by using sensitive pump-probe reflectivity spectroscopy with ultrashort (7.5 fs) laser pulses. We observed enhancement of phonon amplitudes (C═C stretching modes) in the femtosecond time domain, considered to be due to the enhanced electromagnetic (EM) field around the Au nanostructures. Finite-difference time-domain (FDTD) calculations confirmed the EM enhancement. The enhancement causes drastic increase of coherent D-mode (40 THz) phonon amplitude and nanostructure-dependent changes in the amplitude and dephasing time of coherent G-mode (47 THz) phonons. This methodology should be suitable to study the basic mechanism of SERS and may also find application in nanofabrication.

[1]  V. S. Zuev,et al.  Enhancement of Raman scattering for an atom or molecule near a metal nanocylinder: quantum theory of spontaneous emission and coupling to surface plasmon modes. , 2005, The Journal of chemical physics.

[2]  Juris Blums,et al.  Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit , 2003, Nature.

[3]  M. Veres,et al.  Specific statistical features of surface enhanced Raman scattering (SERS) spectra of graphite , 2004 .

[4]  Syassen,et al.  Graphite under pressure: Equation of state and first-order Raman modes. , 1989, Physical review. B, Condensed matter.

[5]  H. Fukuda,et al.  An Application of Surface-Enhanced Raman Scattering to the Surface Characterization of Carbon Materials , 1986 .

[6]  T. Shimada,et al.  Dynamics of coherent phonons in disordered graphite , 2010 .

[7]  H. Philipp,et al.  Optical Properties of Graphite , 1965 .

[8]  Ken-ichi Yoshida,et al.  Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures , 2010 .

[9]  T. Vo‐Dinh,et al.  Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers. , 2009, Optics express.

[10]  Katsuhiro Ajito,et al.  Observation of a small number of molecules at a metal nanogap arrayed on a solid surface using surface-enhanced Raman scattering. , 2007, Journal of the American Chemical Society.

[11]  K. Novoselov,et al.  Raman spectroscopy of graphene edges. , 2008, Nano letters.

[12]  L. Wirtz,et al.  Ultrafast Electron-Phonon Decoupling in Graphite , 2007, 0712.1879.

[13]  Y. Masumoto,et al.  Coherent lattice vibration of interlayer shearing mode of graphite , 2000 .

[14]  Muneaki Hase,et al.  Interaction of coherent phonons with defects and elementary excitations , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  L. Schulz,et al.  The Optical Constants of Silver, Gold, Copper, and Aluminum. I. The Absorption Coefficient k , 1954 .

[16]  Francesco Mauri,et al.  Kohn anomalies and electron-phonon interactions in graphite. , 2004, Physical review letters.

[17]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[18]  R. Birke,et al.  Time-dependent picture of the charge-transfer contributions to surface enhanced Raman spectroscopy. , 2007, The Journal of chemical physics.

[19]  L. Kavan,et al.  The influence of doping on the Raman intensity of the D band in single walled carbon nanotubes , 2010 .

[20]  H. P. Lu Site-specific Raman spectroscopy and chemical dynamics of nanoscale interstitial systems , 2005 .

[21]  T. Becker,et al.  Controlled cluster condensation into preformed nanometer-sized pits , 1997 .

[22]  Boyd,et al.  Near-threshold ion-induced defect production in graphite. , 1993, Physical review. B, Condensed matter.

[23]  H. Petek,et al.  Coherent phonon anisotropy in aligned single-walled carbon nanotubes. , 2008, Nano letters.

[24]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[25]  Riichiro Saito,et al.  Raman spectroscopy of carbon nanotubes , 2005 .

[26]  T. Shahbazyan,et al.  Microscopic theory of surface-enhanced Raman scattering in noble-metal nanoparticles , 2005, cond-mat/0506205.

[27]  A Gupta,et al.  Raman scattering from high-frequency phonons in supported n-graphene layer films. , 2006, Nano letters.

[28]  M. Dresselhaus,et al.  ORIGIN OF DISPERSIVE EFFECTS OF THE RAMAN D BAND IN CARBON MATERIALS , 1999 .

[29]  M. Dresselhaus,et al.  Studying disorder in graphite-based systems by Raman spectroscopy. , 2007, Physical chemistry chemical physics : PCCP.

[30]  M. Dresselhaus,et al.  Probing phonon dispersion relations of graphite by double resonance Raman scattering. , 2001, Physical review letters.

[31]  Nakamura,et al.  Disorder-induced line broadening in first-order Raman scattering from graphite. , 1990, Physical review. B, Condensed matter.

[32]  M. Kitajima,et al.  Raman scattering from graphite surface irradiated by deuterium ions , 1992 .

[33]  M. Dresselhaus,et al.  Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes. , 2000, Physical review letters.

[34]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[35]  Jing Kong,et al.  Can graphene be used as a substrate for Raman enhancement? , 2010, Nano letters.

[36]  George Chumanov,et al.  Light-induced coherent interactions between silver nanoparticles in two-dimensional arrays. , 2003, Journal of the American Chemical Society.

[37]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[38]  K. Nelson,et al.  Impulsive stimulated light scattering. I. General theory , 1987 .

[39]  K. Oguri,et al.  Observation of coherent phonons in metallic carbon nanotubes , 2010 .

[40]  Xu,et al.  Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  Zhenyu Zhang,et al.  Chemical contribution to surface-enhanced Raman scattering. , 2006, Physical review letters.

[42]  S. Abe,et al.  High-Frequency Coherent Phonons in Graphene on Silicon , 2011 .

[43]  Louis E. Brus,et al.  Surface Enhanced Raman Spectroscopy of Individual Rhodamine 6G Molecules on Large Ag Nanocrystals , 1999 .

[44]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[45]  M. M. Lucchese,et al.  Raman spectroscopy study of Ar+ bombardment in highly oriented pyrolytic graphite , 2009 .

[46]  Thomsen,et al.  Double resonant raman scattering in graphite , 2000, Physical review letters.

[47]  Manuel Cardona,et al.  Light Scattering in Solids VII , 1982 .

[48]  Hrvoje Petek,et al.  The birth of a quasiparticle in silicon observed in time–frequency space , 2003, Nature.

[49]  R. Antón,et al.  In situTEM evaluation of the growth kinetics of Au particles on highly oriented pyrolithic graphite at elevated temperatures , 2000 .

[50]  F. Tangherlini,et al.  Optical Constants of Silver, Gold, Copper, and Aluminum. II. The Index of Refraction n , 1954 .

[51]  Thomas Elsaesser,et al.  Ultrafast carrier dynamics in graphite. , 2009, Physical review letters.

[52]  Louis E. Brus,et al.  Single Molecule Raman Spectroscopy at the Junctions of Large Ag Nanocrystals , 2003 .

[53]  K. Nelson,et al.  Excited state dynamics in pure molecular crystals: perylene and the excimer problem , 1979 .

[54]  Hiromi Okamoto,et al.  Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites. , 2006, Nano letters.

[55]  Shin-ichi Nakashima,et al.  Dynamics of coherent anharmonic phonons in bismuth using high density photoexcitation. , 2002, Physical review letters.

[56]  Yoichi Kochibe,et al.  Electromagnetic Wave Simulation Software Poynting , 2008 .

[57]  Thomas R Huser,et al.  Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. , 2005, Nano letters.