Acid-corrosion-formed amorphous phosphate surfaces improve electrochemical stability of LiNi0.80Co0.15Al0.05O2 cathodes

[1]  Jinzhao Huang,et al.  High-rate and long-life lithium-ion batteries coupling surface-Al3+-enriched LiNi0.7Co0.15Mn0.15O2 cathode with porous Li4Ti5O12 anode , 2019 .

[2]  D. Yin,et al.  Air-induced Degradation and Electrochemical Regeneration for the Performance of Layered Ni-Rich Cathodes. , 2019, ACS applied materials & interfaces.

[3]  X. Jing,et al.  Effect of phosphate additive on the morphology and anti-corrosion performance of plasma electrolytic oxidation coatings on magnesium―lithium alloy , 2019, Corrosion Science.

[4]  G. Ye,et al.  Superior corrosion resistance KAlSi2O6-containing materials for calcining Li-ion battery cathode materials , 2019, Corrosion Science.

[5]  J. Dahn,et al.  An Unavoidable Challenge for Ni-Rich Positive Electrode Materials for Lithium-Ion Batteries , 2019, Chemistry of Materials.

[6]  J. Janek,et al.  There and Back Again-The Journey of LiNiO2 as a Cathode Active Material. , 2019, Angewandte Chemie.

[7]  Wangda Li,et al.  Collapse of LiNi1- x- yCo xMn yO2 Lattice at Deep Charge Irrespective of Nickel Content in Lithium-Ion Batteries. , 2019, Journal of the American Chemical Society.

[8]  Chuankun Jia,et al.  Enhanced 4.5 V/55 °C cycling performance of LiCoO2 cathode via LiAlO2LiCo1-xAlxO2 double-layer coatings , 2019, Electrochimica Acta.

[9]  Liping Shao,et al.  Hydrothermal-assisted synthesis of surface aluminum-doped LiCoO2 nanobricks for high-rate lithium-ion batteries , 2018, Ceramics International.

[10]  R. Behm,et al.  MnPO4‐Coated Li(Ni0.4Co0.2Mn0.4)O2 for Lithium(‐Ion) Batteries with Outstanding Cycling Stability and Enhanced Lithiation Kinetics , 2018, Advanced Energy Materials.

[11]  Xueping Gao,et al.  Na-Doped LiNi0.8Co0.15Al0.05O2 with Excellent Stability of Both Capacity and Potential as Cathode Materials for Li-Ion Batteries , 2018, ACS Applied Energy Materials.

[12]  Jianming Zheng,et al.  Designing principle for Ni-rich cathode materials with high energy density for practical applications , 2018, Nano Energy.

[13]  A. Dolocan,et al.  Modified High-Nickel Cathodes with Stable Surface Chemistry Against Ambient Air for Lithium-Ion Batteries. , 2018, Angewandte Chemie.

[14]  Ya‐Xia Yin,et al.  Suppressing Surface Lattice Oxygen Release of Li‐Rich Cathode Materials via Heterostructured Spinel Li4Mn5O12 Coating , 2018, Advanced materials.

[15]  Wangda Li,et al.  Mn versus Al in Layered Oxide Cathodes in Lithium‐Ion Batteries: A Comprehensive Evaluation on Long‐Term Cyclability , 2018 .

[16]  Wangda Li,et al.  Facilitating the Operation of Lithium-ion Cells with High-nickel Layered Oxide Cathodes with a Small Dose of Aluminum , 2018 .

[17]  Jun-Ho Park,et al.  Metal phosphate-coated Ni-rich layered oxide positive electrode materials for Li-ion batteries: improved electrochemical performance and decreased Li residuals content , 2017 .

[18]  G. Amatucci,et al.  Electrochemical and Thermal Stress of LiNi0.8Co0.15Al0.05O2 Electrodes: Evolution of Aluminum Surface Environments , 2017 .

[19]  Li Chen,et al.  The effect of Co3O4 & LiCoO2 cladding layer on the high rate and storage property of high nickel material LiNi0.8Co0.15Al0.05O2 by simple one-step wet coating method , 2017 .

[20]  Wangda Li,et al.  High-voltage positive electrode materials for lithium-ion batteries. , 2017, Chemical Society reviews.

[21]  Yunhui Huang,et al.  Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 by nanoscale surface modification with Co3O4 , 2017 .

[22]  Jun Chen,et al.  SiO2-coated LiNi0.915Co0.075Al0.01O2 cathode material for rechargeable Li-ion batteries. , 2016, Nanoscale.

[23]  Liang Ni,et al.  Improved cycling performance of LiNi0.8Co0.15Al0.05O2/Al2O3 with core-shell structure synthesized by a heterogeneous nucleation-and-growth process , 2016, Ionics.

[24]  Sun-Ju Song,et al.  An in-situ gas chromatography investigation into the suppression of oxygen gas evolution by coated amorphous cobalt-phosphate nanoparticles on oxide electrode , 2016, Scientific Reports.

[25]  K. Du,et al.  The Role of Sodium in LiNi0.8Co0.15Al0.05O2 Cathode Material and Its Electrochemical Behaviors , 2016 .

[26]  H. Wang,et al.  Effects of fluorine doping on structure, surface chemistry, and electrochemical performance of LiNi0.8Co0.15Al0.05O2 , 2015 .

[27]  Yan Xu,et al.  Structure and electrochemical performance of TiO2-coated LiNi0.80Co0.15Al0.05O2 cathode material , 2015 .

[28]  Feng Wu,et al.  Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries. , 2015, ACS applied materials & interfaces.

[29]  Pengjian Zuo,et al.  Lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 oxide coated by Li3PO4 and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries , 2015 .

[30]  Xin-quan Yu,et al.  Stearic acid modified aluminum surfaces with controlled wetting properties and corrosion resistance , 2014 .

[31]  Zhixing Wang,et al.  A comprehensive study on electrochemical performance of Mn-surface-modified LiNi0.8Co0.15Al0.05O2 synthesized by an in situ oxidizing-coating method , 2014 .

[32]  Chong Seung Yoon,et al.  Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries , 2013 .

[33]  Jian-hua Wang,et al.  Effect of heat-treatment on the surface structure and electrochemical behavior of AlPO4-coated LiNi1/3Co1/3Mn1/3O2 cathode materials , 2013 .

[34]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[35]  Tae-Hee Kim,et al.  Electronegativity-induced enhancement of thermal stability by succinonitrile as an additive for Li ion batteries , 2011 .

[36]  Yong Joon Park,et al.  Enhanced electrochemical properties of Li(Ni0.4Co0.3Mn0.3)O2 cathode by surface modification using Li3PO4-based materials , 2011 .

[37]  D. Jacob,et al.  Amorphous, nanocrystalline and crystalline calcium carbonates in biological materials , 2011 .

[38]  Y. Shao-horn,et al.  Probing the Origin of Enhanced Stability of AlPO4 Nanoparticle Coated LiCoO2 during Cycling to High Voltages: Combined XRD and XPS Studies , 2009 .

[39]  Yasutaka Matsuda,et al.  Thin Film Batteries with Li3PO4 Solid Electrolyte Fabricated by Pulsed Laser Deposition , 2009 .

[40]  A. Mauger,et al.  Structural characteristics of lithium nickel phosphate studied using analytical electron microscopy and raman spectroscopy , 2006 .

[41]  Matsuhiko Nishizawa,et al.  Kinetic Characterization of Single Particles of LiCoO2 by AC Impedance and Potential Step Methods , 2001 .

[42]  D. Gonbeau,et al.  XPS analysis of new lithium cobalt oxide thin-films before and after lithium deintercalation , 2001 .

[43]  K. Amine,et al.  A New Three‐Volt Spinel Li1 + x Mn1.5Ni0.5 O 4 for Secondary Lithium Batteries , 1996 .

[44]  A. Zoulalian,et al.  Influence de la géométrie sur la distribution des temps de séjour et les performances d'un système lagunaire non aéré isotherme , 1989 .

[45]  Kaiyue Shi,et al.  Facile Fabrication and Low-cost Coating of LiNi Co with Enhanced Electrochemical Performance as Cathode Materials for Lithium-ion Batteries , 2017 .