Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review

Il est courant, en inférence fréquentielle, d'utiliser un point unique (une estimation ponctuelle) ou un intervalle (intervalle de confiance) dans le but d'estimer un paramètre d'intér^t. Une question très simple se pose: peut‐on également utiliser, dans le même but, et dans la même optique fréquentielle, à la façon dont les Bayésiens utilisent une loi a posteriori, une distribution de probabilité? La réponse est affirmative, et les distributions de confiance apparaissent comme un choix naturel dans ce contexte. Le concept de distribution de confiance a une longue histoire, longtemps associée, à tort, aux théories d'inférence fiducielle, ce qui a compromis son développement dans l'optique fréquentielle. Les distributions de confiance ont récemment attiré un regain d'intérêt, et plusieurs résultats ont mis en évidence leur potentiel considérable en tant qu'outil inférentiel. Cet article présente une définition moderne du concept, et examine les ses évolutions récentes. Il aborde les méthodes d'inférence, les problèmes d'optimalité, et les applications. A la lumière de ces nouveaux développements, le concept de distribution de confiance englobe et unifie un large éventail de cas particuliers, depuis les exemples paramétriques réguliers (distributions fiducielles), les lois de rééchantillonnage, les p‐valeurs et les fonctions de vraisemblance normalisées jusqu'aux a priori et posteriori bayésiens. La discussion est entièrement menée d'un point de vue fréquentiel, et met l'accent sur les applications dans lesquelles les solutions fréquentielles sont inexistantes ou d'une application difficile. Bien que nous attirions également l'attention sur les similitudes et les différences que présentent les approches fréquentielle, fiducielle, et Bayésienne, notre intention n'est pas de rouvrir un débat philosophique qui dure depuis près de deux cents ans. Nous espérons bien au contraire contribuer à combler le fossé qui existe entre les différents points de vue.

[1]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[2]  J. Neyman On the Two Different Aspects of the Representative Method: the Method of Stratified Sampling and the Method of Purposive Selection , 1934 .

[3]  T. E. Sterne,et al.  Inverse Probability , 1930, Nature.

[4]  J. Neyman Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability , 1937 .

[5]  Le Cam,et al.  On some asymptotic properties of maximum likelihood estimates and related Bayes' estimates , 1953 .

[6]  T. E. Sterne,et al.  Some remarks on confidence or fiducial limits , 1954 .

[7]  M. S. Bartlett,et al.  Statistical methods and scientific inference. , 1957 .

[8]  Edwin L. Crow,et al.  CONFIDENCE INTERVALS FOR A PROPORTION , 1956 .

[9]  M. Kendall Theoretical Statistics , 1956, Nature.

[10]  Gant SOME PROBLEMS IN STATISTICAL INFERENCE , 1958 .

[11]  D. Cox Some problems connected with statistical inference , 1958 .

[12]  David Lindley,et al.  Fiducial Distributions and Bayes' Theorem , 1958 .

[13]  Rory A. Fisher,et al.  On Some Extensions of Bayesian Inference Proposed by Mr Lindley , 1960 .

[14]  Allan Birnbaum,et al.  Confidence Curves: An Omnibus Technique for Estimation and Testing Statistical Hypotheses , 1961 .

[15]  B. L. Welch,et al.  On Formulae for Confidence Points Based on Integrals of Weighted Likelihoods , 1963 .

[16]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[17]  Calyampudi Radhakrishna Rao,et al.  Linear Statistical Inference and its Applications , 1967 .

[18]  Richard A. Johnson An Asymptotic Expansion for Posterior Distributions , 1967 .

[19]  Ramon C. Littell,et al.  Asymptotic Optimality of Fisher's Method of Combining Independent Tests , 1971 .

[20]  R. Fisher,et al.  Statistical Methods and Scientific Inference, 3rd Ed.@@@Scientific Inference, 3rd Ed. , 1974 .

[21]  M. Kupperman Linear Statistical Inference and Its Applications 2nd Edition (C. Radhakrishna Rao) , 1975 .

[22]  LES PROPRIÉTÉS ASYMPTOTIQUES DES SOLUTIONS DE CERTAINS SYSTÈMES D'ÉQUATIONS DIFFÉRENTIELLES , 1979 .

[23]  Roger L. Berger,et al.  Multiparameter Hypothesis Testing and Acceptance Sampling , 1982 .

[24]  C. Blyth,et al.  Binomial Confidence Intervals , 1983 .

[25]  G. J. Babu,et al.  Inference on Means Using the Bootstrap , 1983 .

[26]  Donald Fraser,et al.  Further remarks on asymptotic normality of likelihood and conditional analyses , 1984 .

[27]  George Casella,et al.  Refining binomial confidence intervals , 1986 .

[28]  B. Efron Why Isn't Everyone a Bayesian? , 1986 .

[29]  Robert Tibshirani,et al.  Bootstrap confidence intervals and bootstrap approximations , 1987 .

[30]  B. Efron Better Bootstrap Confidence Intervals , 1987 .

[31]  J. Mau,et al.  A statistical assessment of clinical equivalence. , 1988, Statistics in medicine.

[32]  Sensitive and Sturdy $p$-Values , 1991 .

[33]  Donald Fraser,et al.  Statistical Inference: Likelihood to Significance , 1991 .

[34]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[35]  Peter Hall,et al.  On the Removal of Skewness by Transformation , 1992 .

[36]  S. L. Zabell,et al.  R. A. Fisher and Fiducial Argument , 1992 .

[37]  B. Efron,et al.  More accurate confidence intervals in exponential families , 1992 .

[38]  B. Efron Bayes and likelihood calculations from confidence intervals , 1993 .

[39]  A note on inference for the mean parameter of the gamma distribution , 1993 .

[40]  D J Spiegelhalter,et al.  The CHART trials: Bayesian design and monitoring in practice. CHART Steering Committee. , 1994, Statistics in medicine.

[41]  Z. Ying,et al.  A resampling method based on pivotal estimating functions , 1994 .

[42]  David J. Spiegelhalter,et al.  Bayesian Approaches to Randomized Trials , 1994, Bayesian Biostatistics.

[43]  D. Cox,et al.  Inference and Asymptotics , 1994 .

[44]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[45]  A. Wong On approximate inference for the two-parameter gamma model , 1995 .

[46]  Bernard W. Silverman International Statistical Review , 1996 .

[47]  Bradley Efron,et al.  R.A. Fisher In The 21St Century , 1997 .

[48]  P Bélisle,et al.  Bayesian and mixed Bayesian/likelihood criteria for sample size determination. , 1997, Statistics in medicine.

[49]  Bradley Efron,et al.  R. A. Fisher in the 21st century (Invited paper presented at the 1996 R. A. Fisher Lecture) , 1998 .

[50]  Regina Y. Liu,et al.  Multivariate analysis by data depth: descriptive statistics, graphics and inference, (with discussion and a rejoinder by Liu and Singh) , 1999 .

[51]  S L Normand,et al.  Meta-analysis: formulating, evaluating, combining, and reporting. , 1999, Statistics in medicine.

[52]  Tore Schweder,et al.  Frequentist Analogues of Priors and Posteriors , 1999 .

[53]  Helge Blaker,et al.  Confidence curves and improved exact confidence intervals for discrete distributions , 2000 .

[54]  Paradoxes and Improvements in Interval Estimation , 2000 .

[55]  N. Hjort,et al.  Confidence and Likelihood * , 2002 .

[56]  Annotated Readings in the History of Statistics , 2003 .

[57]  T. Schweder Abundance Estimation from Multiple Photo Surveys: Confidence Distributions and Reduced Likelihoods for Bowhead Whales off Alaska , 2003, Biometrics.

[58]  Frank Hampel,et al.  The proper fiducial argument , 2005, Electron. Notes Discret. Math..

[59]  Stephen E. Fienberg,et al.  Testing Statistical Hypotheses , 2005 .

[60]  Hajo Zeeb,et al.  Tutorial: Using Confidence Curves in Medical Research , 2005, Biometrical journal. Biometrische Zeitschrift.

[61]  Minge Xie,et al.  Combining information from independent sources through confidence distributions , 2005, math/0504507.

[62]  CONFIDENCE NETS FOR CURVES , 2006 .

[63]  D. Bickel Incorporating expert knowledge into frequentist inference by combining generalized confidence distributions , 2006 .

[64]  David R. Cox,et al.  PRINCIPLES OF STATISTICAL INFERENCE , 2017 .

[65]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[66]  Minge Xie,et al.  Confidence distribution (CD) -- distribution estimator of a parameter , 2007, 0708.0976.

[67]  Julian P T Higgins,et al.  Recent developments in meta‐analysis , 2008, Statistics in medicine.

[68]  Arthur P. Dempster,et al.  The Dempster-Shafer calculus for statisticians , 2008, Int. J. Approx. Reason..

[69]  Lu Tian,et al.  Exact and efficient inference procedure for meta-analysis and its application to the analysis of independent 2 x 2 tables with all available data but without artificial continuity correction. , 2009, Biostatistics.

[70]  Cun-Hui Zhang,et al.  Confidence Intervals for Population Ranks in the Presence of Ties and Near Ties , 2009 .

[71]  Jean-Marie Dufour,et al.  Hodges-Lehmann sign-based estimators and generalized confidence distributions in linear median regressions with heterogenous dependent errors ∗ , 2009 .

[72]  N. Krasnikov,et al.  The Transform between the space of observed values and the space of possible values of the parameter , 2009, 1311.6103.

[73]  Tore Schweder,et al.  Population Estimates From Aerial Photographic Surveys of Naturally and Variably Marked Bowhead Whales , 2010 .

[74]  Nancy Reid,et al.  Mean loglikelihood and higher-order approximations , 2010 .

[75]  P. Hall,et al.  Bootstrap confidence intervals and hypothesis tests for extrema of parameters , 2010 .

[76]  Chuanhai Liu,et al.  Dempster-Shafer Theory and Statistical Inference with Weak Beliefs , 2010, 1011.0819.

[77]  B. Lindsay,et al.  USING CONFIDENCE DISTRIBUTION SAMPLING TO VISUALIZE CONFIDENCE SETS , 2011 .

[78]  S. Nadarajah,et al.  Confidence distributions in statistical inference , 2011 .

[79]  D. A. S. Fraser Is Bayes Posterior just Quick and Dirty Confidence , 2011 .

[80]  Tianxi Cai,et al.  The Highest Confidence Density Region and Its Usage for Joint Inferences about Constrained Parameters , 2011, Biometrics.

[81]  Minge Xie,et al.  Confidence Distributions and a Unifying Framework for Meta-Analysis , 2011 .

[82]  Robert E Kass,et al.  Statistical Inference: The Big Picture. , 2011, Statistical science : a review journal of the Institute of Mathematical Statistics.

[83]  Min‐ge Xie,et al.  CD posterior – combining prior and data through confidence distributions , 2012 .

[84]  K. Singh,et al.  Discussion of "Is Bayes Posterior just Quick and Dirty Confidence?" by D. A. S. Fraser , 2012, 1202.0627.

[85]  Minge Xie,et al.  Meta-Analysis With Fixed, Unknown, Study-Specific Parameters , 2014 .

[86]  Vijay Nair Advances in statistical modeling and inference , 2013 .

[87]  Regina Y. Liu,et al.  Incorporating external information in analyses of clinical trials with binary outcomes , 2013, 1304.6208.

[88]  Todd Iverson,et al.  Generalized fiducial inference , 2014 .

[89]  D. Fraser,et al.  Mean likelihood and higher order approximations , 2022 .