Monte Carlo simulation and experimental validation of plant microtubules cathode in biodegradable battery

[1]  S. Harinipriya,et al.  Hydrogen storage capacity of polypyrrole in alkaline medium: effect of oxidants and counter anions , 2019, Journal of Materials Research and Technology.

[2]  J. Tuszynski The Bioelectric Circuitry of the Cell , 2019, Brain and Human Body Modeling.

[3]  B. Frieden,et al.  Signal transmission through elements of the cytoskeleton form an optimized information network in eukaryotic cells , 2019, Scientific Reports.

[4]  H. Cantiello,et al.  Bundles of Brain Microtubules Generate Electrical Oscillations , 2018, Scientific Reports.

[5]  Wanlin Guo,et al.  Ion Permeability of a Microtubule in Neuron Environment. , 2018, The journal of physical chemistry letters.

[6]  Cameron M. Hough,et al.  Response to Alternating Electric Fields of Tubulin Dimers and Microtubule Ensembles in Electrolytic Solutions , 2017, Scientific Reports.

[7]  J. Tuszynski,et al.  Environmental Research and Public Health an Overview of Sub-cellular Mechanisms Involved in the Action of Ttfields , 2022 .

[8]  S. Harinipriya,et al.  Physiochemical Characterization of tubulin from Arachis hypogaea , 2016 .

[9]  T. Bürgi Properties of the gold-sulphur interface: from self-assembled monolayers to clusters. , 2015, Nanoscale.

[10]  Peter W Barlow,et al.  The natural history of consciousness, and the question of whether plants are conscious, in relation to the Hameroff-Penrose quantum-physical ‘Orch OR’ theory of universal consciousness , 2015, Communicative & integrative biology.

[11]  Olga Kononova,et al.  Tubulin Bond Energies and Microtubule Biomechanics Determined from Nanoindentation in Silico , 2014, Journal of the American Chemical Society.

[12]  J. Tuszynski,et al.  Analysis of the strength of interfacial hydrogen bonds between tubulin dimers using quantum theory of atoms in molecules. , 2014, Biophysical journal.

[13]  D. Baker,et al.  High-Resolution Microtubule Structures Reveal the Structural Transitions in αβ-Tubulin upon GTP Hydrolysis , 2014, Cell.

[14]  P. Baas,et al.  Microtubules in neurons as information carriers , 2014, Journal of neurochemistry.

[15]  M. Zivanov,et al.  Solitonic Ionic Currents Along Microtubules , 2010 .

[16]  Avner Priel,et al.  Microtubule ionic conduction and its implications for higher cognitive functions. , 2010, Journal of integrative neuroscience.

[17]  Martin Hoefling,et al.  Interaction of amino acids with the Au(111) surface: adsorption free energies from molecular dynamics simulations. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[18]  J. McIntosh,et al.  Lattice structure of cytoplasmic microtubules in a cultured Mammalian cell. , 2009, Journal of molecular biology.

[19]  J. Tuszynski,et al.  Model of ionic currents through microtubule nanopores and the lumen. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Francesco Boncinelli,et al.  A Model of Consciousness , 2009 .

[21]  J. Mozziconacci,et al.  Tubulin Dimers Oligomerize before Their Incorporation into Microtubules , 2008, PloS one.

[22]  J. Tuszynski,et al.  On the Role of Microtubules in Cognitive Brain Functions , 2007 .

[23]  E. Dekel,et al.  Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors , 2007, Proceedings of the National Academy of Sciences.

[24]  C. Dekker,et al.  Electrophoresis of individual microtubules in microchannels , 2007, Proceedings of the National Academy of Sciences.

[25]  P. Deymier,et al.  Experimental evaluation of electrical conductivity of microtubules , 2007 .

[26]  E. Muto,et al.  Dielectric measurement of individual microtubules using the electroorientation method. , 2006, Biophysical journal.

[27]  J. Vercammen,et al.  Correct diffusion coefficients of proteins in fluorescence correlation spectroscopy. Application to tubulin oligomers induced by Mg2+ and Paclitaxel. , 2004, Biophysical journal.

[28]  Nathan A. Baker,et al.  The physical basis of microtubule structure and stability , 2003, Protein science : a publication of the Protein Society.

[29]  William V Nicholson,et al.  Microtubule structure at 8 A resolution. , 2002, Structure.

[30]  J A Tuszynski,et al.  Analysis of the migration behaviour of single microtubules in electric fields. , 2002, Biochemical and biophysical research communications.

[31]  G. Gundersen,et al.  Microtubules and signal transduction. , 1999, Current opinion in cell biology.

[32]  S. Hameroff Quantum computation in brain microtubules? The Penrose-Hameroff 'Orch OR' model of consciousness , 1998 .

[33]  N. Hirokawa,et al.  Kinesin and dynein superfamily proteins and the mechanism of organelle transport. , 1998, Science.

[34]  Roger Penrose,et al.  Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness , 1996 .

[35]  Jack A. Tuszynski,et al.  Ferroelectric behavior in microtubule dipole lattices: Implications for information processing, signaling and assembly/disassembly* , 1995 .

[36]  K. Johnson,et al.  Polymerization of Antarctic fish tubulins at low temperatures: energetic aspects. , 1989, Biochemistry.

[37]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.

[38]  E. Postow,et al.  SEMICONDUCTION IN PROTEINS AND LIPIDS—ITS POSSIBLE BIOLOGICAL IMPORT * , 1969, Annals of the New York Academy of Sciences.

[39]  J. Ladik Energy Band Structure of Proteins , 1964, Nature.

[40]  BARNETT ROSENBERG,et al.  Electrical Conductivity of Proteins , 1962, Nature.

[41]  G. C. Benson,et al.  A Reinvestigation of the Conductance of Aqueous Solutions of Potassium Chloride, Sodium Chloride, and Potassium Bromide at Temperatures from 15° to 45°C , 1945 .

[42]  M. Bertotti,et al.  Nanoporous Gold Surface: An Efficient Platform for Hydrogen Evolution Reaction at Very Low Overpotential , 2017 .

[43]  D. Sekulic,et al.  AN IMPROVED NANOSCALE TRANSMISSION LINE MODEL OF MICROTUBULE: THE EFFECT OF NONLINEARITY ON THE PROPAGATION OF ELECTRICAL SIGNALS , 2015 .

[44]  D. D. Eley,et al.  The semiconductivity of organic substances. Part 3.—Haemoglobin and some amino acids , 1959 .

[45]  M. G. Evans,et al.  A discussion of the possibility of bands of energy levels in proteins electronic interaction in non bonded systems , 1949 .