Towards a Unified and Coherent Land Surface Temperature Earth System Data Record from Geostationary Satellites

Our objective is to develop a framework for deriving long term, consistent Land Surface Temperatures (LSTs) from Geostationary (GEO) satellites that is able to account for satellite sensor updates. Specifically, we use the Radiative Transfer for TOVS (RTTOV) model driven with Modern-Era Retrospective Analysis for Research and Applications (MERRA-2) information and Combined ASTER and MODIS Emissivity over Land (CAMEL) products. We discuss the results from our comparison of the Geostationary Operational Environmental Satellite East (GOES-E) with the MODIS Land Surface Temperature and Emissivity (MOD11) products, as well as several independent sources of ground observations, for daytime and nighttime independently. Based on a six-year record at instantaneous time scale (2004–2009), most LST estimates are within one std from the mean observed value and the bias is under 1% of the mean. It was also shown that at several ground sites, the diurnal cycle of LST, as averaged over six years, is consistent with a similar record generated from satellite observations. Since the evaluation of the GOES-E LST estimates occurred at every hour, day and night, the data are well suited to address outstanding issues related to the temporal variability of LST, specifically, the diurnal cycle and the amplitude of the diurnal cycle, which are not well represented in LST retrievals form Low Earth Orbit (LEO) satellites.

[1]  Marcel Fuchs,et al.  Infrared measurement of canopy temperature and detection of plant water stress , 1990 .

[2]  Manfred Owe,et al.  On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces , 1993 .

[3]  Jeff Dozier,et al.  A generalized split-window algorithm for retrieving land-surface temperature from space , 1996, IEEE Trans. Geosci. Remote. Sens..

[4]  R. Pinker,et al.  Experiments with Cloud Properties: Impact on Surface Radiative Fluxes , 2008 .

[5]  Shunlin Liang,et al.  An optimization algorithm for separating land surface temperature and emissivity from multispectral thermal infrared imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[6]  A. French,et al.  Land surface temperature retrieval at high spatial and temporal resolutions over the southwestern United States , 2008 .

[7]  Bo-Hui Tang,et al.  Estimation of Diurnal Cycle of Land Surface Temperature at High Temporal and Spatial Resolution from Clear-Sky MODIS Data , 2014, Remote. Sens..

[8]  B. Mayer,et al.  Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment , 2012 .

[9]  B. McArthur,et al.  Baseline surface radiation network (BSRN/WCRP) New precision radiometry for climate research , 1998 .

[10]  Simon J. Hook,et al.  Land Surface Temperature Product Validation Best Practice Protocol Version 1.0 - October, 2017 , 2017 .

[11]  K. Moffett,et al.  Remote Sens , 2015 .

[12]  Jeffrey L. Privette,et al.  Modeling the observed angular anisotropy of land surface temperature in a Savanna , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Fran Li,et al.  Surface temperature and emissivity at various scales: Definition, measurement and related problems , 1995 .

[14]  Ecmwf Newsletter,et al.  EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS , 2004 .

[15]  Zhengming Wan,et al.  Simultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from Moderate-Resolution Imaging Spectroradiometer thermal infrared data: extension of a two-step physical algorithm. , 2002, Applied optics.

[16]  J. Labed,et al.  Spectral properties of land surfaces in the thermal infrared: 1. Laboratory measurements of absolute spectral emissivity signatures , 1990 .

[17]  W. C. Snyder,et al.  Classification-based emissivity for land surface temperature measurement from space , 1998 .

[18]  Martha C. Anderson,et al.  Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations , 2010 .

[19]  Larry M. McMillin,et al.  Estimation of sea surface temperatures from two infrared window measurements with different absorption , 1975 .

[20]  W. Paul Menzel,et al.  Intercalibration of Broadband Geostationary Imagers Using AIRS , 2009 .

[21]  J. Townshend,et al.  Global land cover classi(cid:142) cation at 1 km spatial resolution using a classi(cid:142) cation tree approach , 2004 .

[22]  Z. Li,et al.  Towards a local split window method over land surfaces , 1990 .

[23]  Eva Borbas,et al.  The Combined ASTER MODIS Emissivity over Land (CAMEL) Part 2: Uncertainty and Validation , 2018, Remote. Sens..

[24]  M. Matricardi,et al.  An improved fast radiative transfer model for assimilation of satellite radiance observations , 1999 .

[25]  Shuichi Rokugawa,et al.  A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1998, IEEE Trans. Geosci. Remote. Sens..

[26]  R. T. Pinker,et al.  Implementation of GOES‐based land surface temperature diurnal cycle to AVHRR , 2005 .

[27]  D. Lorenz The Effect of the Long-wave Reflectivity of Natural Surfaces on Surface Temperature Measurements Using Radiometers , 1966 .

[28]  José A. Sobrino,et al.  Satellite-derived land surface temperature: Current status and perspectives , 2013 .

[29]  K. Trenberth,et al.  Accuracy of Atmospheric Energy Budgets from Analyses , 2002 .

[30]  K. Trenberth,et al.  The Diurnal Cycle and Its Depiction in the Community Climate System Model , 2004 .

[31]  Zhao-Liang Li,et al.  Improvements in the split-window technique for land surface temperature determination , 1994, IEEE Trans. Geosci. Remote. Sens..

[32]  Bin Zhao,et al.  The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). , 2017, Journal of climate.

[33]  C Smith,et al.  Operational calibration of Geostationary Operational Environmental Satellite-8 and-9 imagers and sounders. , 1997, Applied optics.

[34]  Wei Zhao,et al.  Surface Soil Water Content Estimation from Thermal Remote Sensing based on the Temporal Variation of Land Surface Temperature , 2014, Remote. Sens..

[35]  Isabel F. Trigo,et al.  An assessment of remotely sensed land surface temperature , 2008 .

[36]  Z. Wan New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product , 2014 .

[37]  Simon J. Hook,et al.  Generating Consistent Land Surface Temperature and Emissivity Products Between ASTER and MODIS Data for Earth Science Research , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Filipe Aires,et al.  Temporal interpolation of global surface skin temperature diurnal cycle over land under clear and cloudy conditions , 2004 .

[39]  Zhao-Liang Li,et al.  A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data , 1997, IEEE Trans. Geosci. Remote. Sens..

[40]  Jeffrey L. Privette,et al.  Evaluation of Split-Window Land Surface Temperature Algorithms for Generating Climate Data Records , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Rachel T. Pinker,et al.  Toward improved satellite estimates of short‐wave radiative fluxes—Focus on cloud detection over snow: 1. Methodology , 2007 .

[42]  Christopher A. Fiebrich,et al.  The Oklahoma Mesonet's Skin Temperature Network , 2003 .

[43]  G. Hulley,et al.  Quantifying uncertainties in land surface temperature and emissivity retrievals from ASTER and MODIS thermal infrared data , 2012 .

[44]  Steven D. Miller,et al.  Physical decoupling of the GOES daytime 3.9 µ m channel thermal emission and solar reflection components using total solar eclipse data , 2001 .

[45]  Sofia L. Ermida,et al.  Quantifying the Clear‐Sky Bias of Satellite Land Surface Temperature Using Microwave‐Based Estimates , 2019, Journal of Geophysical Research: Atmospheres.

[46]  M. Matricardi,et al.  Fast radiative transfer model for simulation of infrared atmospheric sounding interferometer radiances. , 1999, Applied optics.

[47]  C. Francois,et al.  Atmospheric corrections in the thermal infrared: global and water vapor dependent split-window algorithms-applications to ATSR and AVHRR data , 1996, IEEE Trans. Geosci. Remote. Sens..

[48]  Joan M. Galve,et al.  Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data , 2005 .

[49]  Donglian Sun,et al.  Estimation of land surface temperature from a Geostationary Operational Environmental Satellite (GOES‐8) , 2003 .

[50]  B. Hicks,et al.  The NOAA Integrated Surface Irradiance Study (ISIS) - A new surface radiation monitoring program , 1996 .

[51]  Simon J. Hook,et al.  The Combined ASTER MODIS Emissivity over Land (CAMEL) Part 1: Methodology and High Spectral Resolution Application , 2018, Remote. Sens..

[52]  Sutherland,et al.  Statewide Monitoring of the Mesoscale Environment: A Technical Update on the Oklahoma Mesonet , 2007 .

[53]  William G. Pichel,et al.  Multi-channel improvements to satellite-derived global sea surface temperatures , 1983 .

[54]  P. S. Kealy,et al.  Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures , 1993, IEEE Trans. Geosci. Remote. Sens..

[55]  V. Caselles,et al.  Mapping land surface emissivity from NDVI: Application to European, African, and South American areas , 1996 .

[56]  Joseph J. Michalsky,et al.  An Update on SURFRAD—The GCOS Surface Radiation Budget Network for the Continental United States , 2005 .

[57]  K. Bedka,et al.  Global clear-sky surface skin temperature from multiple satellites using a single-channel algorithm with angular anisotropy corrections , 2017 .

[58]  Alexander Ignatov,et al.  Monthly Mean Diurnal Cycles in Surface Temperatures over Land for Global Climate Studies , 1999 .

[59]  Isabel F. Trigo,et al.  A Methodology to Simulate LST Directional Effects Based on Parametric Models and Landscape Properties , 2018, Remote. Sens..

[60]  W. Rossow,et al.  ISCCP Cloud Data Products , 1991 .

[61]  Andi Walther,et al.  A Naive Bayesian Cloud-Detection Scheme Derived fromCALIPSOand Applied within PATMOS-x , 2012 .

[62]  Alfred J Prata,et al.  Land surface temperatures derived from the advanced very high resolution radiometer and the along‐track scanning radiometer: 2. Experimental results and validation of AVHRR algorithms , 1994 .

[63]  Drazen Skokovic,et al.  Permanent Stations for Calibration/Validation of Thermal Sensors over Spain , 2016, Data.

[64]  J. C. Price Estimating surface temperatures from satellite thermal infrared data—A simple formulation for the atmospheric effect☆ , 1983 .

[65]  Mark Buehner,et al.  Background Error Correlation between Surface Skin and Air Temperatures: Estimation and Impact on the Assimilation of Infrared Window Radiances , 2004 .

[66]  C. Prabhakara,et al.  Estimation of sea surface temperature from remote sensing in the 11‐ to 13‐μm window region , 1974 .