Recent developments in the study of insect flight

Here we review recent contributions to the study of insect flight, in particular those brought about by advances in experimental techniques. We focus particularly on the following areas: wing flexibility and deformation, the physiology and biophysics of asynchronous insect flight muscle, the aerodynamics of flight, and stability and maneuverability. This recent research reveals the importance of wing flexibility to insect flight, provides a detailed model of how asynchronous flight muscle functions and how it may have evolved, synthesizes many recent studies of insect flight aerodynamics into a broad-reaching summary of unsteady flight aerodynamics, and highlights new insights into the sources of flight stability in insects. The focus on experimental techniques and recently developed apparatus shows how these advancements have occurred and point the way towards future experiments.

[1]  Mao Sun,et al.  Dynamic flight stability of a hovering model insect: lateral motion , 2010 .

[2]  J. Pringle,et al.  The excitation and contraction of the flight muscles of insects , 1949, The Journal of physiology.

[3]  A K Soh,et al.  Experimental studies of the material properties of the forewing of cicada (Homóptera, Cicàdidae) , 2004, Journal of Experimental Biology.

[4]  M. Dickinson,et al.  The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. , 2002, The Journal of experimental biology.

[5]  T L Hedrick,et al.  Flight control in the hawkmoth Manduca sexta: the inverse problem of hovering , 2006, Journal of Experimental Biology.

[6]  Adrian L. R. Thomas,et al.  Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack , 2004, Journal of Experimental Biology.

[7]  R. Kanzaki,et al.  Active control of free flight manoeuvres in a hawkmoth, Agrius convolvuli , 2008, Journal of Experimental Biology.

[8]  Adrian L. R. Thomas,et al.  Deformable wing kinematics in free-flying hoverflies , 2010, Journal of The Royal Society Interface.

[9]  M. Dickinson,et al.  Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers , 2004, Journal of Experimental Biology.

[10]  David Lentink,et al.  The Scalable Design of Flapping Micro-Air Vehicles Inspired by Insect Flight , 2010, Flying Insects and Robots.

[11]  T. Niimi,et al.  Insect Morphological Diversification Through the Modification of Wing Serial Homologs , 2013, Science.

[12]  C. Ellington Unsteady aerodynamics of insect flight. , 1995, Symposia of the Society for Experimental Biology.

[13]  G. Piazzesi,et al.  Ca-activation and stretch-activation in insect flight muscle. , 2004, Biophysical journal.

[14]  T. Irving,et al.  X-Ray Diffraction of Indirect Flight Muscle from Drosophila in Vivo , 2006 .

[15]  Z. J. Wang,et al.  Using computational and mechanical models to study animal locomotion. , 2012, Integrative and comparative biology.

[16]  Jun Zhang,et al.  Symmetry breaking leads to forward flapping flight , 2004, Journal of Fluid Mechanics.

[17]  C. Ellington,et al.  The scaling of myofibrillar actomyosin ATPase activity in apid bee flight muscle in relation to hovering flight energetics , 2010, Journal of Experimental Biology.

[18]  Ellington,et al.  A computational fluid dynamic study of hawkmoth hovering , 1998, The Journal of experimental biology.

[19]  R. Levy,et al.  A theory for the hydrodynamic origin of whale flukeprints , 2011 .

[20]  Roger L. Chang,et al.  The Cross-Bridge Spring: Can Cool Muscles Store Elastic Energy? , 2013, Science.

[21]  S. Vogel Flight in Drosophila : III. Aerodynamic Characteristics of Fly Wing Sand Wing Models , 1967 .

[22]  D. Acheson Elementary Fluid Dynamics , 1990 .

[23]  Robert Krasny,et al.  Vortex Sheet Computations: Roll-Up, Wakes, Separation , 1991 .

[24]  M. Dickinson,et al.  Wing rotation and the aerodynamic basis of insect flight. , 1999, Science.

[25]  Sanjay P Sane,et al.  The aerodynamics of insect flight , 2003, Journal of Experimental Biology.

[26]  Kevin Knowles,et al.  Formation of vortices and spanwise flow on an insect-like flapping wing throughout a flapping half cycle , 2013, The Aeronautical Journal (1968).

[27]  J. Marden,et al.  Surface-Skimming Stoneflies: A Possible Intermediate Stage in Insect Flight Evolution , 1994, Science.

[28]  Hirokazu Matsumoto,et al.  A fringe shadow method for measuring flapping angle and torsional angle of a dragonfly wing , 1996 .

[29]  Mao Sun,et al.  Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. , 2002, The Journal of experimental biology.

[30]  María José Fernández,et al.  Neuromuscular and biomechanical compensation for wing asymmetry in insect hovering flight , 2012, Journal of Experimental Biology.

[31]  A. R. Ennos,et al.  Mechanical behaviour in torsion of insect wings, blades of grass and other cambered structures , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[32]  Dario Floreano,et al.  Flying Insects and Robots , 2010 .

[33]  Dwight Springthorpe,et al.  Neuromuscular control of free-flight yaw turns in the hawkmoth Manduca sexta , 2012, Journal of Experimental Biology.

[34]  R. Josephson,et al.  Power output by an asynchronous flight muscle from a beetle. , 2000, The Journal of experimental biology.

[35]  Z. J. Wang,et al.  The role of drag in insect hovering , 2004, Journal of Experimental Biology.

[36]  T. Daniel,et al.  The Journal of Experimental Biology 206, 2979-2987 © 2003 The Company of Biologists Ltd , 2022 .

[37]  A. R. Ennos INERTIAL AND AERODYNAMIC TORQUES ON THE WINGS OF DIPTERA IN FLIGHT , 1989 .

[38]  Hao Liu,et al.  Perturbation analysis of 6DoF flight dynamics and passive dynamic stability of hovering fruit fly Drosophila melanogaster. , 2011, Journal of theoretical biology.

[39]  M. Wernet Digital Particle Image Velocimetry , 2003 .

[40]  Mao Sun,et al.  Effects of wing deformation on aerodynamic forces in hovering hoverflies , 2010, Journal of Experimental Biology.

[41]  J. P. Lindemann,et al.  Function of a Fly Motion-Sensitive Neuron Matches Eye Movements during Free Flight , 2005, PLoS biology.

[42]  C. Rees Form and function in corrugated insect wings , 1975, Nature.

[43]  Holger Babinsky,et al.  Reynolds number effects on leading edge vortex development on a waving wing , 2011 .

[44]  H. Krapp,et al.  In Vivo Time-Resolved Microtomography Reveals the Mechanics of the Blowfly Flight Motor , 2014, PLoS biology.

[45]  Werner Nachtigall,et al.  Abbiegungen und Abknickungen von Insektenflügeln beim Flug ohne und mit zusätzlicher Beutelast , 2000 .

[46]  Michael Kaspari,et al.  Gliding hexapods and the origins of insect aerial behaviour , 2009, Biology Letters.

[47]  S. Alben,et al.  Coherent locomotion as an attracting state for a free flapping body. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Z. J. Wang,et al.  Active and passive stabilization of body pitch in insect flight , 2013, Journal of The Royal Society Interface.

[49]  Adrian L. R. Thomas,et al.  Operation of the alula as an indicator of gear change in hoverflies , 2012, Journal of The Royal Society Interface.

[50]  Imraan A. Faruque,et al.  Dipteran insect flight dynamics. Part 1 Longitudinal motion about hover. , 2010, Journal of theoretical biology.

[51]  J. Vincent,et al.  Design and mechanical properties of insect cuticle. , 2004, Arthropod structure & development.

[52]  David Gore,et al.  X-ray diffraction evidence for myosin-troponin connections and tropomyosin movement during stretch activation of insect flight muscle , 2010, Proceedings of the National Academy of Sciences.

[53]  Rajat Mittal,et al.  A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries , 2008, J. Comput. Phys..

[54]  M. May Dragonfly Flight: Power Requirements at High Speed and Acceleration , 1991 .

[55]  S. Kanemaki,et al.  A Theory for the , 1986 .

[56]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[57]  R. Wootton,et al.  An Approach to the Mechanics of Pleating in Dragonfly Wings , 1986 .

[58]  Boyce E. Griffith,et al.  A unified mathematical framework and an adaptive numerical method for fluid-structure interaction with rigid, deforming, and elastic bodies , 2013, J. Comput. Phys..

[59]  K. E. Machin,et al.  The physiology of insect fibrillar muscle III. The effect of sinusoidal changes of length on a beetle flight muscle , 1960, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[60]  Nicola Rohrseitz,et al.  Behavioural system identification of visual flight speed control in Drosophila melanogaster , 2011, Journal of The Royal Society Interface.

[61]  J. Kukalová-Peck Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record , 1978, Journal of morphology.

[62]  M. Dickinson,et al.  A linear systems analysis of the yaw dynamics of a dynamically scaled insect model , 2010, Journal of Experimental Biology.

[63]  S A Combes,et al.  Dynamics of animal movement in an ecological context: dragonfly wing damage reduces flight performance and predation success , 2010, Biology Letters.

[64]  Anders Hedenström,et al.  Elytra boost lift, but reduce aerodynamic efficiency in flying beetles , 2012, Journal of The Royal Society Interface.

[65]  Tyson L Hedrick,et al.  Damping in flapping flight and its implications for manoeuvring, scaling and evolution , 2011, Journal of Experimental Biology.

[66]  Graham K. Taylor,et al.  Application of digital particle image velocimetry to insect aerodynamics: measurement of the leading-edge vortex and near wake of a Hawkmoth , 2006 .

[67]  T. Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the fling , 2007 .

[68]  Silas Alben,et al.  Wake-mediated synchronization and drafting in coupled flags , 2009, Journal of Fluid Mechanics.

[69]  Bernhard Wieneke,et al.  Tomographic particle image velocimetry , 2006 .

[70]  R. Dukas,et al.  Coping with nonrepairable body damage: effects of wing damage on foraging performance in bees , 2011, Animal Behaviour.

[71]  R. Cartar,et al.  What causes wing wear in foraging bumble bees? , 2011, Journal of Experimental Biology.

[72]  Graham K. Taylor,et al.  Smoke visualization of free-flying bumblebees indicates independent leading-edge vortices on each wing pair , 2009 .

[73]  Z. Jane Wang,et al.  An immersed interface method for simulating the interaction of a fluid with moving boundaries , 2006, J. Comput. Phys..

[74]  John Young,et al.  Details of Insect Wing Design and Deformation Enhance Aerodynamic Function and Flight Efficiency , 2009, Science.

[75]  Adrian L. R. Thomas,et al.  Photogrammetric reconstruction of high-resolution surface topographies and deformable wing kinematics of tethered locusts and free-flying hoverflies , 2009, Journal of The Royal Society Interface.

[76]  T. Weis-Fogh Quick estimates of flight fitness in hovering animals , 1973 .

[77]  J. Usherwood,et al.  The aerodynamics of revolving wings I. Model hawkmoth wings. , 2002, The Journal of experimental biology.

[78]  M. Dickinson,et al.  The effect of advance ratio on the aerodynamics of revolving wings , 2004, Journal of Experimental Biology.

[79]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[80]  Z. J. Wang,et al.  Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments , 2004, Journal of Experimental Biology.

[81]  Thomas L Daniel,et al.  Flexible Wings and Fins: Bending by Inertial or Fluid-Dynamic Forces?1 , 2002, Integrative and comparative biology.

[82]  H. Krapp,et al.  Sensory Systems and Flight Stability: What do Insects Measure and Why? , 2007 .

[83]  R. Dudley The Biomechanics of Insect Flight: Form, Function, Evolution , 1999 .

[84]  Li Ling,et al.  Aerodynamic effects , 2000 .

[85]  R. Wootton,et al.  Function, homology and terminology in insect wings , 1979 .

[86]  R. Cartar,et al.  Morphological senescence and longevity : an experiment relating wing wear and life span in foraging wild bumble bees , 1992 .

[87]  Shigeru Sunada,et al.  Optical Measurement of the Deformation, Motion, and Generated Force of the Wings of a Moth, Mythimna Separata (Walker) , 2002 .

[88]  M. Dickinson,et al.  Spanwise flow and the attachment of the leading-edge vortex on insect wings , 2001, Nature.

[89]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[90]  V Medici,et al.  Embodied linearity of speed control in Drosophila melanogaster , 2012, Journal of The Royal Society Interface.

[91]  Z. J. Wang,et al.  Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. , 2007, Physical review letters.

[92]  R. Adrian Twenty years of particle image velocimetry , 2005 .

[93]  Zhilin Li,et al.  The immersed interface method for the Navier-Stokes equations with singular forces , 2001 .

[94]  S. Hayashi,et al.  Evolutionary origin of the insect wing via integration of two developmental modules , 2010, Evolution & development.

[95]  Lijiang Zeng,et al.  A scanning projected line method for measuring a beating bumblebee wing , 2000 .

[96]  S. Sane,et al.  Antennal Mechanosensors Mediate Flight Control in Moths , 2007, Science.

[97]  Randall J. LeVeque,et al.  An Immersed Interface Method for Incompressible Navier-Stokes Equations , 2003, SIAM J. Sci. Comput..

[98]  H. Iwamoto,et al.  Fast x-ray recordings reveal dynamic action of contractile and regulatory proteins in stretch-activated insect flight muscle. , 2010, Biophysical journal.

[99]  Fritz-Olaf Lehmann,et al.  Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl , 2008, Journal of The Royal Society Interface.

[100]  R. Josephson,et al.  The efficiency of an asynchronous flight muscle from a beetle. , 2001, The Journal of experimental biology.

[101]  R. Josephson Mechanical Power output from Striated Muscle during Cyclic Contraction , 1985 .

[102]  A B Kesel,et al.  Biomechanical aspects of the insect wing: an analysis using the finite element method , 1998, Comput. Biol. Medicine.

[103]  S. Sunada,et al.  Fluid-dynamic characteristics of a bristled wing. , 2002, The Journal of experimental biology.

[104]  M. Cloupeau,et al.  Direct Measurements of Instantaneous Lift in Desert Locust; Comparison with Jensen'S Experiments on Detached Wings , 1979 .

[105]  David Maughan,et al.  Molecular dynamics of cyclically contracting insect flight muscle in vivo , 2005, Nature.

[106]  Jeff D. Eldredge,et al.  An inviscid model for vortex shedding from a deforming body , 2007 .

[107]  Lijiang Zeng,et al.  Measuring the camber deformation of a dragonfly wing using projected comb fringe , 2001 .

[108]  Xinyan Deng,et al.  Aerodynamics of dragonfly flight and robotic design , 2009, 2009 IEEE International Conference on Robotics and Automation.

[109]  S. N. Fry,et al.  Visual control of flight speed in Drosophila melanogaster , 2009, Journal of Experimental Biology.

[110]  Z. J. Wang,et al.  Flapping wing flight can save aerodynamic power compared to steady flight. , 2009, Physical review letters.

[111]  M. Lighthill On the Weis-Fogh mechanism of lift generation , 1973, Journal of Fluid Mechanics.

[112]  D. Ishihara,et al.  Passive maintenance of high angle of attack and its lift generation during flapping translation in crane fly wing , 2009, Journal of Experimental Biology.

[113]  H. Park,et al.  Use of a digital image correlation technique for measuring the material properties of beetle wing , 2009 .

[114]  C. Peskin,et al.  When vortices stick: an aerodynamic transition in tiny insect flight , 2004, Journal of Experimental Biology.

[115]  T. Daniel,et al.  Into thin air: contributions of aerodynamic and inertial-elastic forces to wing bending in the hawkmoth Manduca sexta , 2003, Journal of Experimental Biology.

[116]  M. Dickinson,et al.  The influence of wing–wake interactions on the production of aerodynamic forces in flapping flight , 2003, Journal of Experimental Biology.

[117]  Kai Schneider,et al.  Two- and three-dimensional numerical simulations of the clap–fling–sweep of hovering insects , 2010 .

[118]  S. Vogel Flight in Drosophila. II. Variations in stroke parameters and wing contour. , 1967, The Journal of experimental biology.

[119]  C. Ellington,et al.  The three–dimensional leading–edge vortex of a ‘hovering’ model hawkmoth , 1997 .

[120]  C. Peskin,et al.  Flexible clap and fling in tiny insect flight , 2009, Journal of Experimental Biology.

[121]  R. Wootton,et al.  The hind wing of the desert locust (Schistocerca gregaria Forskål). III. A finite element analysis of a deployable structure. , 2000, The Journal of experimental biology.

[122]  Taichi Kuroki,et al.  Dynamic behavior of the vortex ring formed on a butterfly wing , 2013 .

[123]  W. Nachtigall Insect wing bending and folding during flight without and with an additional prey load. , 2000 .

[124]  W. J. Duncan Theoretical Aerodynamics , 1948, Nature.

[125]  Donald Rockwell,et al.  Flow structure on finite-span wings due to pitch-up motion , 2011, Journal of Fluid Mechanics.

[126]  Chunyong Yin,et al.  Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies , 2003, Journal of Experimental Biology.

[127]  John M. Stockie,et al.  An efficient parallel immersed boundary algorithm using a pseudo-compressible fluid solver , 2015, J. Comput. Phys..

[128]  Z. J. Wang,et al.  Fruit flies modulate passive wing pitching to generate in-flight turns. , 2009, Physical review letters.

[129]  K. Leonard,et al.  Troponin of asynchronous flight muscle. , 1988, Journal of molecular biology.

[130]  Rajat Mittal,et al.  The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin , 2010, Journal of Experimental Biology.

[131]  R Kanzaki,et al.  A dual-channel FM transmitter for acquisition of flight muscle activities from the freely flying hawkmoth, Agrius convolvuli , 2002, Journal of Neuroscience Methods.

[132]  M. S. Tu,et al.  Submaximal power output from the dorsolongitudinal flight muscles of the hawkmoth Manduca sexta , 2004, Journal of Experimental Biology.

[134]  R Blickhan,et al.  The function of resilin in beetle wings , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[135]  Sun Mao,et al.  Flows around two airfoils performing fling and subsequent translation and translation and subsequent clap , 2003 .

[136]  I. Faruque,et al.  Dipteran insect flight dynamics. Part 2: Lateral-directional motion about hover. , 2010, Journal of theoretical biology.

[137]  Fan Song,et al.  Microstructure and nanomechanical properties of the wing membrane of dragonfly , 2007 .

[138]  Toshiyuki Nakata,et al.  Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach , 2012, Proceedings of the Royal Society B: Biological Sciences.

[139]  R. Josephson,et al.  Asynchronous muscle: a primer. , 2000, The Journal of experimental biology.

[140]  S. Gorb Serial Elastic Elements in the Damselfly Wing: Mobile Vein Joints Contain Resilin , 1999, Naturwissenschaften.

[141]  R. Krasny Desingularization of periodic vortex sheet roll-up , 1986 .

[142]  Mao Sun,et al.  Flight stabilization control of a hovering model insect , 2007, Journal of Experimental Biology.

[143]  Shigeru Sunada,et al.  The Relationship Between Dragonfly Wing Structure and Torsional Deformation , 1998 .

[144]  T. Hedrick,et al.  The mechanics and control of pitching manoeuvres in a freely flying hawkmoth (Manduca sexta) , 2011, Journal of Experimental Biology.

[145]  Hao Liu,et al.  Integrated modeling of insect flight: From morphology, kinematics to aerodynamics , 2009, J. Comput. Phys..

[146]  M. Dickinson,et al.  The aerodynamic effects of wing–wing interaction in flapping insect wings , 2005, Journal of Experimental Biology.

[147]  S. P. Roberts,et al.  Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[148]  S. Combes,et al.  Resilin in dragonfly and damselfly wings and its implications for wing flexibility , 2011, Journal of morphology.

[149]  J. Pringle,et al.  The physiology of insect fibrillar muscle - I. Anatomy and innervation of the basalar muscle of lamellicorn beetles , 1959, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[150]  H. K. Moffatt,et al.  Evolution of the Leading-Edge Vortex over an Accelerating Rotating Wing , 2013 .

[151]  C. Peskin,et al.  A computational fluid dynamics of `clap and fling' in the smallest insects , 2005, Journal of Experimental Biology.

[152]  T. Hedrick,et al.  Wingbeat Time and the Scaling of Passive Rotational Damping in Flapping Flight , 2009, Science.

[153]  Z. J. Wang Vortex shedding and frequency selection in flapping flight , 2000, Journal of Fluid Mechanics.

[154]  R. Dudley,et al.  Directed aerial descent in canopy ants , 2005, Nature.

[155]  Andrew M. Mountcastle,et al.  Biomechanical strategies for mitigating collision damage in insect wings: structural design versus embedded elastic materials , 2014, Journal of Experimental Biology.

[156]  R. Wootton,et al.  Elastic joints in dermapteran hind wings: materials and wing folding. , 2000, Arthropod structure & development.

[157]  C. Ellington The novel aerodynamics of insect flight: applications to micro-air vehicles. , 1999, The Journal of experimental biology.

[158]  Z. J. Wang,et al.  Passive wing pitch reversal in insect flight , 2007, Journal of Fluid Mechanics.

[159]  Adrian L. R. Thomas,et al.  Dynamic flight stability in the desert locust Schistocerca gregaria , 2003, Journal of Experimental Biology.

[160]  Mao Sun,et al.  A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering , 2004, Journal of Experimental Biology.

[161]  A. R. Ennos THE IMPORTANCE OF TORSION IN THE DESIGN OF INSECT WINGS , 1988 .

[162]  Adrian L. R. Thomas,et al.  Deformable wing kinematics in the desert locust: how and why do camber, twist and topography vary through the stroke? , 2009, Journal of The Royal Society Interface.

[163]  Adrian L. R. Thomas,et al.  New experimental approaches to the biology of flight control systems , 2008, Journal of Experimental Biology.

[164]  R. Wootton Leading edge section and asymmetric twisting in the wings of flying butterflies (Insecta, Papilionoidea) , 1993 .

[165]  W. Danthanarayana,et al.  Insect Flight , 1986, Proceedings in Life Sciences.

[166]  D. E. Alexander Unusual Phase Relationships Between The Forewings And Hindwings In Flying Dragonflies , 1984 .

[167]  T. Maxworthy Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’ , 1979, Journal of Fluid Mechanics.

[168]  Mao Sun,et al.  Floquet stability analysis of the longitudinal dynamics of two hovering model insects , 2012, Journal of The Royal Society Interface.

[169]  R. Wootton FUNCTIONAL MORPHOLOGY OF INSECT WINGS , 1992 .

[170]  G. Hou,et al.  Numerical Methods for Fluid-Structure Interaction — A Review , 2012 .

[171]  Yuan Lu,et al.  Three-dimensional flow structures and evolution of the leading-edge vortices on a flapping wing , 2008, Journal of Experimental Biology.

[172]  R. Norberg,et al.  The pterostigma of insect wings an inertial regulator of wing pitch , 1972, Journal of comparative physiology.

[173]  R. B. Srygley,et al.  Unconventional lift-generating mechanisms in free-flying butterflies , 2002, Nature.

[174]  R Mittal,et al.  A comparative study of the hovering efficiency of flapping and revolving wings , 2013, Bioinspiration & biomimetics.

[175]  Kevin K. Chen,et al.  The leading-edge vortex and quasisteady vortex shedding on an accelerating plate , 2009 .

[176]  T. Daniel,et al.  The Journal of Experimental Biology 206, 2989-2997 © 2003 The Company of Biologists Ltd , 2003 .

[177]  K. Götz,et al.  The Wing Beat of Drosophila Melanogaster. II. Dynamics , 1990 .

[178]  Dirk Schönweitz,et al.  Vortex interaction of tandem pitching and plunging plates: a two-dimensional model of hovering dragonfly-like flight , 2011, Bioinspiration & biomimetics.

[179]  Boyce E. Griffith,et al.  On the order of accuracy of the immersed boundary method: Higher order convergence rates for sufficiently smooth problems , 2005 .

[180]  G. Bogaert,et al.  Direct measurements of the , 1998 .

[181]  R. Ramamurti,et al.  A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering , 2007, Journal of Experimental Biology.

[182]  M. Srinivasan,et al.  Visual regulation of ground speed and headwind compensation in freely flying honey bees (Apis mellifera L.) , 2006, Journal of Experimental Biology.

[183]  Tyson L Hedrick,et al.  Within-wingbeat damping: dynamics of continuous free-flight yaw turns in Manduca sexta , 2010, Biology Letters.

[184]  B. Balachandran,et al.  Influence of flexibility on the aerodynamic performance of a hovering wing , 2009, Journal of Experimental Biology.

[185]  Andrew M. Mountcastle,et al.  Wing flexibility enhances load-lifting capacity in bumblebees , 2013, Proceedings of the Royal Society B: Biological Sciences.

[186]  Dirk Michaelis,et al.  Tomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation , 2012, Journal of The Royal Society Interface.

[187]  F. Lehmann,et al.  Elastic deformation and energy loss of flapping fly wings , 2011, Journal of Experimental Biology.

[188]  M. Dickinson,et al.  UNSTEADY AERODYNAMIC PERFORMANCE OF MODEL WINGS AT LOW REYNOLDS NUMBERS , 1993 .

[189]  T. Maxworthy,et al.  The formation and maintenance of a leading-edge vortex during the forward motion of an animal wing , 2007, Journal of Fluid Mechanics.

[190]  K. Knowles,et al.  Formation of the leading-edge vortex and spanwise flow on an insect-like flapping-wing throughout a flapping half cycle , 2013 .

[191]  Toshiyuki Nakata,et al.  A fluid-structure interaction model of insect flight with flexible wings , 2012, J. Comput. Phys..

[192]  W. Nachtigall,et al.  Hydromechanics and biology , 2004, Biophysics of structure and mechanism.

[193]  B. Agianian,et al.  A troponin switch that regulates muscle contraction by stretch instead of calcium , 2004, The EMBO journal.

[194]  Adrian L. R. Thomas,et al.  Leading-edge vortices in insect flight , 1996, Nature.

[195]  M. Dickinson,et al.  Rotational accelerations stabilize leading edge vortices on revolving fly wings , 2009, Journal of Experimental Biology.

[196]  R. Wootton,et al.  The hind wing of the desert locust (Schistocerca gregaria Forskål). II. Mechanical properties and functioning of the membrane. , 2000, The Journal of experimental biology.

[197]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[198]  J. Vigoreaux,et al.  Nature's versatile engine : insect flight muscle inside and out , 2005 .

[199]  D. Maughan,et al.  In vivo x-ray diffraction of indirect flight muscle from Drosophila melanogaster. , 2000, Biophysical journal.

[200]  P. A. Newman,et al.  Efficient nonlinear static aeroelastic wing analysis , 1999 .

[201]  Mao Sun,et al.  Dynamic Flight Stability of a Hovering Hoverfly , 2007 .

[202]  S. Sane,et al.  Aerodynamic effects of flexibility in flapping wings , 2010, Journal of The Royal Society Interface.

[203]  Fritz-Olaf Lehmann,et al.  The free-flight response of Drosophila to motion of the visual environment , 2008, Journal of Experimental Biology.

[204]  Andrew M. Mountcastle,et al.  Aerodynamic and functional consequences of wing compliance , 2009 .

[205]  C. Ellington,et al.  The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight. , 1997, The Journal of experimental biology.

[206]  R. Wootton,et al.  The hind wing of the desert locust (Schistocerca gregaria Forskål). I. Functional morphology and mode of operation. , 2000, The Journal of experimental biology.