Microstructure and mechanical properties of friction stir welded joint of TRIP steel

[1]  Pai Peng,et al.  Friction Stir Processing of Magnesium Alloys: A Review , 2019, Acta Metallurgica Sinica (English Letters).

[2]  K. Ushioda,et al.  Evaluation of dynamic development of grain structure during friction stir welding of pure copper using a quasi in situ method , 2019, Journal of Materials Science & Technology.

[3]  K. Ushioda,et al.  Experimental evaluation of strain and strain rate during rapid cooling friction stir welding of pure copper , 2018, Science and Technology of Welding and Joining.

[4]  A. Mostafapour,et al.  Finite element and experimental investigation on the effects of temperature, strain and strain rate on microstructure and mechanical properties of FSSWed TRIP steel joints , 2018, Materials Research Express.

[5]  H. Jafarian,et al.  Evolution of microstructure and mechanical properties of Fe-24Ni-0.3C TRIP steel during friction stir processing , 2018 .

[6]  Yutaka S. Sato,et al.  Microstructure and tensile behavior of friction-stir welded TRIP steel , 2018 .

[7]  Kuai-she Wang,et al.  Corrosion fatigue behavior of friction stir processed interstitial free steel , 2017 .

[8]  F. Goodwin,et al.  Microstructure and mechanical properties of fibre laser welded medium manganese TRIP steel , 2017 .

[9]  A. Mostafapour,et al.  Numerical and experimental study on the effects of welding environment and input heat on properties of FSSWed TRIP steel , 2017 .

[10]  A. Ramirez,et al.  Microstructural Evolution During Friction Stir Welding of Mild Steel and Ni-Based Alloy 625 , 2017, Metallurgical and Materials Transactions A.

[11]  Amir Mostafapour,et al.  Finite element investigation on the effect of FSSW parameters on the size of welding subdivided zones in TRIP steels , 2017 .

[12]  A. Perez,et al.  Microstructural Development in a TRIP-780 Steel Joined by Friction Stir Welding (FSW): Quantitative Evaluations and Comparisons with EBSD Predictions , 2016 .

[13]  H. Fujii,et al.  Enhanced tensile properties of Fe–Ni–C steel resulting from stabilization of austenite by friction stir welding , 2015 .

[14]  J. Sietsma,et al.  Deformation-induced austenite grain rotation and transformation in TRIP-assisted steel , 2012 .

[15]  R. Steel,et al.  Microstructure Characterization of Friction Stir Spot Welded TRIP Steel , 2011 .

[16]  M. Koyama,et al.  Work hardening associated with ɛ-martensitic transformation, deformation twinning and dynamic strain aging in Fe–17Mn–0.6C and Fe–17Mn–0.8C TWIP steels , 2011 .

[17]  H. Fujii,et al.  Development of friction stir welding of high strength steel sheet , 2011 .

[18]  C. Afonso,et al.  Fracture toughness of ISO 3183 X80M (API 5L X80) steel friction stir welds , 2010 .

[19]  Ohjoon Kwon,et al.  New Trends in Advanced High Strength Steel Developments for Automotive Application , 2010 .

[20]  Lei Chen,et al.  Localized Deformation due to Portevin-LeChatelier Effect in 18Mn-0.6C TWIP Austenitic Steel , 2007 .

[21]  V. Ventzke,et al.  Failure behaviour of laser spot welds of TRIP800 steel sheets under coach–peel loading , 2007 .

[22]  H. Haferkamp,et al.  Laser Beam Welding of New High Strength Steels for Auto Body Construction , 2007 .

[23]  Yoritoshi Minamino,et al.  Crystallographic features of lath martensite in low-carbon steel , 2006 .

[24]  Jonathan P. Wright,et al.  Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling , 2005 .

[25]  W. Hutchinson,et al.  Transformation Textures in Steels , 2005 .

[26]  H. Kokawa,et al.  Microstructures in Friction Stir Welded 304 Austenitic Stainless Steel , 2005 .

[27]  D. Raabe,et al.  Relation between microstructure and mechanical properties of a low-alloyed TRIP steel , 2004 .

[28]  S. Jung,et al.  The joint properties of copper by friction stir welding , 2004 .

[29]  S. Peng Dynamic Tensile Properties and Retained Austenite Transformation in HSLA-TRIP Steel , 2004 .

[30]  F. Delannay,et al.  The Developments of Cold-rolled TRIP-assisted Multiphase Steels. Al-alloyed TRIP-assisted Multiphase Steels , 2001 .

[31]  E. Werner,et al.  The modeling of retained austenite in low-alloyed TRIP steels , 1997 .

[32]  Osamu Matsumura,et al.  Influence of C Content and Annealing Temperature on Microstructure and Mechanical Properties of 400°C Transformed Steel Containing Retained Austenite , 1991 .