Halide Segregation in Mixed-Halide Perovskites: Influence of A-Site Cations

Mixed-halide perovskites offer bandgap tunability essential for multijunction solar cells; however, a detrimental halide segregation under light is often observed. Here we combine simultaneous in situ photoluminescence and X-ray diffraction measurements to demonstrate clear differences in compositional and optoelectronic changes associated with halide segregation in MAPb(Br0.5I0.5)3 and FA0.83Cs0.17Pb(Br0.4I0.6)3 films. We report evidence for low-barrier ionic pathways in MAPb(Br0.5I0.5)3, which allow for the rearrangement of halide ions in localized volumes of perovskite without significant compositional changes to the bulk material. In contrast, FA0.83Cs0.17Pb(Br0.4I0.6)3 lacks such low-barrier ionic pathways and is, consequently, more stable against halide segregation. However, under prolonged illumination, it exhibits a considerable ionic rearrangement throughout the bulk material, which may be triggered by an initial demixing of A-site cations, altering the composition of the bulk perovskite and reducing its stability against halide segregation. Our work elucidates links between composition, ionic pathways, and halide segregation, and it facilitates the future engineering of phase-stable mixed-halide perovskites.

[1]  P. Nellist,et al.  Atomic-scale microstructure of metal halide perovskite , 2020, Science.

[2]  L. Herz,et al.  Preventing phase segregation in mixed-halide perovskites: a perspective , 2020, Energy & Environmental Science.

[3]  B. Stannowski,et al.  A piperidinium salt stabilizes efficient metal-halide perovskite solar cells , 2020, Science.

[4]  P. Kamat,et al.  Photoinduced Anion Segregation in Mixed Halide Perovskites , 2020 .

[5]  Chun‐Sing Lee,et al.  FA-Assistant Iodide Coordination in Organic-Inorganic Wide-Bandgap Perovskite with Mixed Halides. , 2020, Small.

[6]  Jay B. Patel,et al.  Trap States, Electric Fields, and Phase Segregation in Mixed‐Halide Perovskite Photovoltaic Devices , 2020, Advanced Energy Materials.

[7]  M. Johnston,et al.  Revealing the origin of voltage loss in mixed-halide perovskite solar cells , 2020, Energy & Environmental Science.

[8]  Christopher J. Tassone,et al.  Structural Origins of Light-Induced Phase Segregation in Organic-Inorganic Halide Perovskite Photovoltaic Materials , 2020 .

[9]  Fengjia Fan,et al.  Potassium-Bromide Surface Passivation on CsPbI3-xBrx Nanocrystals for Efficient and Stable Pure Red Perovskite Light Emitting Diodes. , 2020, Journal of the American Chemical Society.

[10]  M. Kovalenko,et al.  Direct Synthesis of Quaternary Alkylammonium-Capped Perovskite Nanocrystals for Efficient Blue and Green Light-Emitting Diodes , 2019, ACS energy letters.

[11]  H. Zeng,et al.  Laser induced ion migration in all-inorganic mixed halide perovskite micro-platelets , 2019, Nanoscale advances.

[12]  Jia Zhu,et al.  Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink , 2019, Nature Energy.

[13]  T. Miyasaka,et al.  Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. , 2019, Chemical reviews.

[14]  E. Mosconi,et al.  Formation of Surface Defects Dominates Ion Migration in Lead-Halide Perovskites , 2019, ACS Energy Letters.

[15]  A. Kingon,et al.  Effect of Grain Boundaries on Charge Transport in Methylammonium Lead Iodide Perovskite Thin Films , 2019, The Journal of Physical Chemistry C.

[16]  Nakita K. Noel,et al.  Solution-Processed All-Perovskite Multi-Junction Solar Cells , 2019, Proceedings of the 11th International Conference on Hybrid and Organic Photovoltaics.

[17]  Jay B. Patel,et al.  Electronic Traps and Phase Segregation in Lead Mixed-Halide Perovskite , 2018, ACS Energy Letters.

[18]  Rebecca A. Belisle,et al.  Impact of Surfaces on Photoinduced Halide Segregation in Mixed-Halide Perovskites , 2018, ACS Energy Letters.

[19]  P. Kamat,et al.  Mixed Halide Perovskite Solar Cells. Consequence of Iodide Treatment on Phase Segregation Recovery , 2018, ACS Energy Letters.

[20]  S. Mahanti,et al.  Temperature Dependent Photoinduced Reversible Phase Separation in Mixed-Halide Perovskite , 2018, ACS Applied Energy Materials.

[21]  Ching-ping Wong,et al.  Composition‐Tuned Wide Bandgap Perovskites: From Grain Engineering to Stability and Performance Improvement , 2018, Advanced Functional Materials.

[22]  M. Johnston,et al.  Interplay of Structural and Optoelectronic Properties in Formamidinium Mixed Tin–Lead Triiodide Perovskites , 2018, Advanced Functional Materials.

[23]  Henry J Snaith,et al.  Present status and future prospects of perovskite photovoltaics , 2018, Nature Materials.

[24]  Jay B. Patel,et al.  Highly Crystalline Methylammonium Lead Tribromide Perovskite Films for Efficient Photovoltaic Devices , 2018 .

[25]  F. Toma,et al.  Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic-Inorganic Perovskites. , 2018, Nano letters.

[26]  Edward P. Booker,et al.  Maximizing and stabilizing luminescence from halide perovskites with potassium passivation , 2018, Nature.

[27]  C. Brabec,et al.  Local Observation of Phase Segregation in Mixed-Halide Perovskite. , 2018, Nano letters.

[28]  P. Kamat,et al.  Light-Induced Anion Phase Segregation in Mixed Halide Perovskites , 2018 .

[29]  Yu Cao,et al.  Benzylamine‐Treated Wide‐Bandgap Perovskite with High Thermal‐Photostability and Photovoltaic Performance , 2017 .

[30]  Fuzhi Huang,et al.  Phase Segregation Enhanced Ion Movement in Efficient Inorganic CsPbIBr2 Solar Cells , 2017 .

[31]  P. Kamat,et al.  Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites , 2017, Nature Communications.

[32]  Klaus Weber,et al.  Light and Electrically Induced Phase Segregation and Its Impact on the Stability of Quadruple Cation High Bandgap Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[33]  Alex K.-Y. Jen,et al.  Current-Induced Phase Segregation in Mixed Halide Hybrid Perovskites and its Impact on Two-Terminal Tandem Solar Cell Design , 2017 .

[34]  A. Jen,et al.  Highly Efficient Perovskite–Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage , 2017, Advanced materials.

[35]  J. E. Halpert,et al.  Field-Driven Ion Migration and Color Instability in Red-Emitting Mixed Halide Perovskite Nanocrystal Light-Emitting Diodes , 2017 .

[36]  K. Catchpole,et al.  Rubidium Multication Perovskite with Optimized Bandgap for Perovskite‐Silicon Tandem with over 26% Efficiency , 2017 .

[37]  Sergei V. Kalinin,et al.  Enhancing Ion Migration in Grain Boundaries of Hybrid Organic–Inorganic Perovskites by Chlorine , 2017 .

[38]  Satyaprasad P. Senanayak,et al.  Defect-Assisted Photoinduced Halide Segregation in Mixed-Halide Perovskite Thin Films , 2017 .

[39]  C. Ballif,et al.  Efficient Monolithic Perovskite/Perovskite Tandem Solar Cells , 2017 .

[40]  B. Marí,et al.  Synthesis and characterization of perovskite FAPbBr3−xIx thin films for solar cells , 2017, Monatshefte für Chemie - Chemical Monthly.

[41]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[42]  Henry J. Snaith,et al.  A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films , 2017 .

[43]  Jay B. Patel,et al.  Photovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic properties , 2017 .

[44]  David T. Limmer,et al.  Origin of Reversible Photoinduced Phase Separation in Hybrid Perovskites. , 2016, Nano letters.

[45]  Andreas Schönleber,et al.  The role of PbI2 in CH3NH3PbI3 perovskite stability, solar cell parameters and device degradation. , 2017, Physical chemistry chemical physics : PCCP.

[46]  A. Jen,et al.  Stabilized Wide Bandgap Perovskite Solar Cells by Tin Substitution. , 2016, Nano letters.

[47]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[48]  M. Green,et al.  Critical Role of Grain Boundaries for Ion Migration in Formamidinium and Methylammonium Lead Halide Perovskite Solar Cells , 2016 .

[49]  P. Kamat,et al.  Tracking Iodide and Bromide Ion Segregation in Mixed Halide Lead Perovskites during Photoirradiation , 2016 .

[50]  Jinsong Huang,et al.  Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films , 2016 .

[51]  Anders Hagfeldt,et al.  Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells , 2016 .

[52]  Feng Gao,et al.  Highly Efficient Perovskite Nanocrystal Light‐Emitting Diodes Enabled by a Universal Crosslinking Method , 2016, Advanced materials.

[53]  Prashant V Kamat,et al.  How Lead Halide Complex Chemistry Dictates the Composition of Mixed Halide Perovskites. , 2016, The journal of physical chemistry letters.

[54]  Aron Walsh,et al.  Thermodynamic Origin of Photoinstability in the CH3NH3Pb(I1–xBrx)3 Hybrid Halide Perovskite Alloy , 2016, The journal of physical chemistry letters.

[55]  Rebecca A. Belisle,et al.  Cesium Lead Halide Perovskites with Improved Stability for Tandem Solar Cells. , 2016, The journal of physical chemistry letters.

[56]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[57]  Jinsong Huang,et al.  Stabilized Wide Bandgap MAPbBrxI3–x Perovskite by Enhanced Grain Size and Improved Crystallinity , 2015, Advanced science.

[58]  M. Johnston,et al.  Charge‐Carrier Dynamics and Mobilities in Formamidinium Lead Mixed‐Halide Perovskites , 2015, Advanced materials.

[59]  E. Sargent,et al.  Halide-Dependent Electronic Structure of Organolead Perovskite Materials , 2015 .

[60]  Eric T. Hoke,et al.  Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file. , 2014, Chemical science.

[61]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[62]  Peng Gao,et al.  Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid‐State Solar Cells , 2014 .

[63]  S. Simon The Oxford Solid State Basics , 2013 .

[64]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[65]  E. J. Mittemeijer,et al.  Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening , 1982 .

[66]  A. D. Vos,et al.  Detailed balance limit of the efficiency of tandem solar cells , 1980 .

[67]  R. Nandi,et al.  The analysis of X-ray diffraction profiles from imperfect solids by an application of convolution relations , 1978 .

[68]  E. Tosatti,et al.  Band-Edge Excitons in Pb I 2 : A Puzzle? , 1972 .

[69]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .