Digital quantification using amplified single-molecule detection

We describe a scheme for biomolecule enumeration by converting nanometer-scale specific molecular recognition events mediated by rolling-circle amplification to fluorescent micrometer-sized DNA molecules amenable to discrete optical detection. Our amplified single-molecule detection (SMD) approach preserves the discrete nature of the molecular population, allowing multiplex detection and highly precise quantification of molecules over a dynamic range of seven orders of magnitude. We apply the method for sensitive detection and quantification of the bacterial pathogen Vibrio cholerae.

[1]  Thomas Schmidt,et al.  Homogeneous detection of single rolling circle replication products. , 2004, Analytical chemistry.

[2]  A. Fire,et al.  Rolling replication of short DNA circles. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[3]  P. Lizardi,et al.  Mutation detection and single-molecule counting using isothermal rolling-circle amplification , 1998, Nature Genetics.

[4]  K. Kinzler,et al.  Digital PCR. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[5]  U. Landegren,et al.  Protein detection using proximity-dependent DNA ligation assays , 2002, Nature Biotechnology.

[6]  K. Klose,et al.  Vibrio cholerae and cholera: out of the water and into the host. , 2002, FEMS microbiology reviews.

[7]  R. Rutledge,et al.  Mathematics of quantitative kinetic PCR and the application of standard curves. , 2003, Nucleic acids research.

[8]  Fredrik Dahl,et al.  Circle-to-circle amplification for precise and sensitive DNA analysis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[9]  U. Landegren,et al.  In situ genotyping individual DNA molecules by target-primed rolling-circle amplification of padlock probes , 2004, Nature Methods.

[10]  Mats Nilsson,et al.  Thermoplastic microfluidic platform for single-molecule detection, cell culture, and actuation. , 2005, Analytical chemistry.

[11]  S. Weiss Fluorescence spectroscopy of single biomolecules. , 1999, Science.

[12]  David E. Housman,et al.  Digital genotyping and haplotyping with polymerase colonies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  U Landegren,et al.  Padlock probes: circularizing oligonucleotides for localized DNA detection. , 1994, Science.

[14]  D. Dressman,et al.  Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations , 2003, Proceedings of the National Academy of Sciences of the United States of America.