Sounds are remapped across saccades

To achieve visual space constancy, our brain remaps eye-centered projections of visual objects across saccades. Here, we measured saccade trajectory curvature following the presentation of visual, auditory, and audiovisual distractors in a double-step saccade task to investigate if this stability mechanism also accounts for localized sounds. We found that saccade trajectories systematically curved away from the position at which either a light or a sound was presented, suggesting that both modalities are represented in eye-centered oculomotor centers. Importantly, the same effect was observed when the distractor preceded the execution of the first saccade. These results suggest that oculomotor centers keep track of visual, auditory and audiovisual objects by remapping their eye-centered representations across saccades. Furthermore, they argue for the existence of a supra-modal map which keeps track of multi-sensory object locations across our movements to create an impression of space constancy.

[1]  C. Blakemore,et al.  Developmental plasticity in the visual and auditory representations in the mammalian superior colliculus , 1988, Nature.

[2]  G. Rizzolatti,et al.  Orienting of attention and eye movements , 2004, Experimental Brain Research.

[3]  A. Belopolsky,et al.  Target–Distractor Competition in the Oculomotor System Is Spatiotopic , 2014, The Journal of Neuroscience.

[4]  Stefan Van der Stigchel,et al.  Saccades curve away from previously inhibited locations: evidence for the role of priming in oculomotor competition. , 2013, Journal of neurophysiology.

[5]  Eliana M. Klier,et al.  The superior colliculus encodes gaze commands in retinal coordinates , 2001, Nature Neuroscience.

[6]  Ralf Engbert,et al.  Microsaccades are triggered by low retinal image slip. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Joyce Vliegen,et al.  Dynamic Sound Localization during Rapid Eye-Head Gaze Shifts , 2004, The Journal of Neuroscience.

[8]  D. Sparks,et al.  Sensory and motor maps in the mammalian superior colliculus , 1987, Trends in Neurosciences.

[9]  J. Theeuwes,et al.  Remembering a Location Makes the Eyes Curve Away , 2005, Psychological science.

[10]  M. Meeter,et al.  A model of curved saccade trajectories: Spike rate adaptation in the brainstem as the cause of deviation away , 2014, Brain and Cognition.

[11]  C. Colby,et al.  Trans-saccadic perception , 2008, Trends in Cognitive Sciences.

[12]  Jon Driver,et al.  Eye-movements intervening between two successive sounds disrupt comparisons of auditory location , 2008, Experimental Brain Research.

[13]  D. Burr,et al.  The Ventriloquist Effect Results from Near-Optimal Bimodal Integration , 2004, Current Biology.

[14]  Stephen R. Arnott,et al.  The auditory dorsal pathway: Orienting vision , 2011, Neuroscience & Biobehavioral Reviews.

[15]  Heiner Deubel,et al.  Pre-saccadic remapping relies on dynamics of spatial attention , 2018, bioRxiv.

[16]  R. Andersen,et al.  Eye-centered, head-centered, and intermediate coding of remembered sound locations in area LIP. , 1996, Journal of neurophysiology.

[17]  A. King,et al.  The shape of ears to come: dynamic coding of auditory space , 2001, Trends in Cognitive Sciences.

[18]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[19]  David A. Bulkin,et al.  Distribution of eye position information in the monkey inferior colliculus. , 2012, Journal of neurophysiology.

[20]  T. Heed,et al.  Towards explaining spatial touch perception: Weighted integration of multiple location codes , 2016, Cognitive neuropsychology.

[21]  R. Wurtz Neuronal mechanisms of visual stability , 2008, Vision Research.

[22]  P. Cavanagh,et al.  Visual stability based on remapping of attention pointers , 2010, Trends in Cognitive Sciences.

[23]  Frans W Cornelissen,et al.  The Eyelink Toolbox: Eye tracking with MATLAB and the Psychophysics Toolbox , 2002, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[24]  M. A. Frens,et al.  A quantitative study of auditory-evoked saccadic eye movements in two dimensions , 2004, Experimental Brain Research.

[25]  M. Frens,et al.  Spatial and temporal factors determine auditory-visual interactions in human saccadic eye movements , 1995, Perception & psychophysics.

[26]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[27]  S. Inati,et al.  Eye Position Influences Auditory Responses in Primate Inferior Colliculus , 2001, Neuron.

[28]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[29]  J. Crawford,et al.  Gaze-Centered Remapping of Remembered Visual Space in an Open-Loop Pointing Task , 1998, The Journal of Neuroscience.

[30]  Jennifer M Groh,et al.  Auditory signals evolve from hybrid- to eye-centered coordinates in the primate superior colliculus. , 2012, Journal of neurophysiology.

[31]  Brigitte Röder,et al.  Eye-movement-driven changes in the perception of auditory space , 2010, Attention, perception & psychophysics.

[32]  A. Fuchs,et al.  Eye movements evoked by stimulation of frontal eye fields. , 1969, Journal of neurophysiology.

[33]  D. Robinson Eye movements evoked by collicular stimulation in the alert monkey. , 1972, Vision research.

[34]  M. Rolfs,et al.  Remapping Attention Pointers: Linking Physiology and Behavior , 2016, Trends in Cognitive Sciences.

[35]  David L. Sparks,et al.  Auditory receptive fields in primate superior colliculus shift with changes in eye position , 1984, Nature.

[36]  G. S. Russo,et al.  Frontal eye field activity preceding aurally guided saccades. , 1994, Journal of neurophysiology.

[37]  H H Goossens,et al.  Influence of head position on the spatial representation of acoustic targets. , 1999, Journal of neurophysiology.

[38]  R. Andersen,et al.  Responses to auditory stimuli in macaque lateral intraparietal area. II. Behavioral modulation. , 1999, Journal of neurophysiology.

[39]  M. Goldberg,et al.  Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. , 1996, Journal of neurophysiology.

[40]  Bruce E. Torbett,et al.  Understanding the rules of the road: proteomic approaches to interrogate the blood brain barrier , 2015, Front. Neurosci..

[41]  D L Sparks,et al.  Sensorimotor integration in the primate superior colliculus. II. Coordinates of auditory signals. , 1987, Journal of neurophysiology.

[42]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[43]  David L. Sparks,et al.  Sensori-motor integration in the primate superior colliculus , 1991 .

[44]  A. V. van Opstal,et al.  Influence of Static Eye and Head Position on Tone-Evoked Gaze Shifts , 2011, The Journal of Neuroscience.

[45]  Robert B. Welch,et al.  The interaction of vision and audition in two-dimensional space , 2015, Front. Neurosci..

[46]  M. Goldberg,et al.  The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. , 2003, Journal of neurophysiology.

[47]  J. Theeuwes,et al.  Oculomotor interference of bimodal distractors , 2016, Vision Research.

[48]  R. Walker,et al.  Multisensory interactions in saccade target selection: Curved saccade trajectories , 2001, Experimental Brain Research.

[49]  A. King,et al.  The superior colliculus , 2004, Current Biology.

[50]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[51]  Patrick Cavanagh,et al.  Saccades create similar mislocalizations in visual and auditory space. , 2016, Journal of neurophysiology.

[52]  J. Theeuwes,et al.  Eye movement trajectories and what they tell us , 2006, Neuroscience & Biobehavioral Reviews.

[53]  Adrian K. C. Lee,et al.  Directing Eye Gaze Enhances Auditory Spatial Cue Discrimination , 2014, Current Biology.

[54]  Daniel J Tollin,et al.  Effect of eye position on saccades and neuronal responses to acoustic stimuli in the superior colliculus of the behaving cat. , 2004, Journal of neurophysiology.

[55]  M. Goldberg,et al.  Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. , 1995, Journal of neurophysiology.

[56]  R. Andersen,et al.  Responses to auditory stimuli in macaque lateral intraparietal area. I. Effects of training. , 1999, Journal of neurophysiology.

[57]  Gregory C. DeAngelis,et al.  Diverse Spatial Reference Frames of Vestibular Signals in Parietal Cortex , 2013, Neuron.

[58]  Kae Nakamura,et al.  Updating of the visual representation in monkey striate and extrastriate cortex during saccades , 2002, Proceedings of the National Academy of Sciences of the United States of America.