Image Classification with the Fisher Vector: Theory and Practice

[1]  Kin Hong Wong,et al.  CSIFT based locality-constrained linear coding for image classification , 2014, Pattern Analysis and Applications.

[2]  Dieter Fox,et al.  Multipath Sparse Coding Using Hierarchical Matching Pursuit , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Florent Perronnin,et al.  Modeling the spatial layout of images beyond spatial pyramids , 2012, Pattern Recognit. Lett..

[4]  Gabriela Csurka,et al.  Metric Learning for Large Scale Image Classification: Generalizing to New Classes at Near-Zero Cost , 2012, ECCV.

[5]  Cordelia Schmid,et al.  Aggregating Local Image Descriptors into Compact Codes , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Lorenzo Torresani,et al.  Meta-class features for large-scale object categorization on a budget , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Cordelia Schmid,et al.  Image categorization using Fisher kernels of non-iid image models , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  F. Perronnin,et al.  Towards good practice in large-scale learning for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Andrew Zisserman,et al.  Sparse kernel approximations for efficient classification and detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Marc'Aurelio Ranzato,et al.  Building high-level features using large scale unsupervised learning , 2011, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[11]  Nicolas Le Roux,et al.  Ask the locals: Multi-way local pooling for image recognition , 2011, 2011 International Conference on Computer Vision.

[12]  Frédéric Jurie,et al.  Modeling spatial layout with fisher vectors for image categorization , 2011, 2011 International Conference on Computer Vision.

[13]  Ming Yang,et al.  Large-scale image classification: Fast feature extraction and SVM training , 2011, CVPR 2011.

[14]  Bingbing Ni,et al.  Geometric ℓp-norm feature pooling for image classification , 2011, CVPR 2011.

[15]  Baoxin Li,et al.  Discriminative affine sparse codes for image classification , 2011, CVPR 2011.

[16]  Florent Perronnin,et al.  High-dimensional signature compression for large-scale image classification , 2011, CVPR 2011.

[17]  Alexei A. Efros,et al.  Unbiased look at dataset bias , 2011, CVPR 2011.

[18]  Y. Singer,et al.  Pegasos: Primal Estimated sub-GrAdient SOlver for SVM , 2011, ICML.

[19]  Fei-Fei Li,et al.  What Does Classifying More Than 10, 000 Image Categories Tell Us? , 2010, ECCV.

[20]  Thomas Mensink,et al.  Improving the Fisher Kernel for Large-Scale Image Classification , 2010, ECCV.

[21]  Thomas S. Huang,et al.  Image Classification Using Super-Vector Coding of Local Image Descriptors , 2010, ECCV.

[22]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Cor J. Veenman,et al.  Visual Word Ambiguity , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Jean Ponce,et al.  Learning mid-level features for recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  Florent Perronnin,et al.  Large-scale image categorization with explicit data embedding , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Yihong Gong,et al.  Locality-constrained Linear Coding for image classification , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Florent Perronnin,et al.  Large-scale image retrieval with compressed Fisher vectors , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[28]  Cordelia Schmid,et al.  Aggregating local descriptors into a compact image representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Krista A. Ehinger,et al.  SUN database: Large-scale scene recognition from abbey to zoo , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[30]  Cordelia Schmid,et al.  Multimodal semi-supervised learning for image classification , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[31]  Andrew Zisserman,et al.  Efficient additive kernels via explicit feature maps , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[32]  Cristian Sminchisescu,et al.  Efficient Match Kernel between Sets of Features for Visual Recognition , 2009, NIPS.

[33]  Cordelia Schmid,et al.  Combining efficient object localization and image classification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[34]  Subhransu Maji,et al.  Max-margin additive classifiers for detection , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[35]  Wen Gao,et al.  Group-sensitive multiple kernel learning for object categorization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[36]  Sebastian Nowozin,et al.  On feature combination for multiclass object classification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[37]  Gang Wang,et al.  Learning image similarity from Flickr groups using Stochastic Intersection Kernel MAchines , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[38]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Arnold W. M. Smeulders,et al.  What is the spatial extent of an object? , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Florent Perronnin,et al.  A similarity measure between unordered vector sets with application to image categorization , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Subhransu Maji,et al.  Classification using intersection kernel support vector machines is efficient , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[43]  Eli Shechtman,et al.  In defense of Nearest-Neighbor based image classification , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Ming Liu,et al.  Regression from patch-kernel , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[45]  Léon Bottou,et al.  The Tradeoffs of Large Scale Learning , 2007, NIPS.

[46]  M. C. Spruill,et al.  Asymptotic Distribution of Coordinates on High Dimensional Spheres , 2007 .

[47]  Florent Perronnin,et al.  Fisher Kernels on Visual Vocabularies for Image Categorization , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[48]  G. Griffin,et al.  Caltech-256 Object Category Dataset , 2007 .

[49]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[50]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[51]  Gabriela Csurka,et al.  Adapted Vocabularies for Generic Visual Categorization , 2006, ECCV.

[52]  Siwei Lyu,et al.  Mercer kernels for object recognition with local features , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[53]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[54]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[55]  Barbara Caputo,et al.  Recognition with local features: the kernel recipe , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[56]  Mark J. F. Gales,et al.  Speech Recognition using SVMs , 2001, NIPS.

[57]  David Haussler,et al.  Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.

[58]  Christopher M. Bishop,et al.  Current address: Microsoft Research, , 2022 .

[59]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[60]  R. Gray,et al.  Product code vector quantizers for waveform and voice coding , 1984 .

[61]  A. Cohen,et al.  Finite Mixture Distributions , 1982 .

[62]  Cordelia Schmid,et al.  Product Quantization for Nearest Neighbor Search , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[63]  Andrew Zisserman,et al.  The devil is in the details: an evaluation of recent feature encoding methods , 2011, BMVC.

[64]  C. V. Jawahar,et al.  Generalized RBF feature maps for Efficient Detection , 2010, BMVC.

[65]  Christopher K. I. Williams,et al.  International Journal of Computer Vision manuscript No. (will be inserted by the editor) The PASCAL Visual Object Classes (VOC) Challenge , 2022 .

[66]  F. Perronnin,et al.  XRCE ’ s participation to ImagEval , 2007 .

[67]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[68]  Christopher K. I. Williams,et al.  The Pascal Visual Object Classes Challenge 2006 ( VOC 2006 ) Results , 2006 .

[69]  S. Lazebnik,et al.  Local Features and Kernels for Classication of Texture and Object Categories: A Comprehensive Study , 2006 .

[70]  L. Gool,et al.  The PASCAL visual object classes challenge 2006 (VOC2006) results , 2006 .

[71]  John Shawe-Taylor,et al.  Improving "bag-of-keypoints" image categorisation: Generative Models and PDF-Kernels , 2005 .

[72]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[73]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[74]  David Haussler,et al.  Convolution kernels on discrete structures , 1999 .

[75]  D. Song,et al.  Lp-NORM UNIFORM DISTRIBUTION , 1996 .

[76]  Pietro Burrascano,et al.  A norm selection criterion for the generalized delta rule , 1991, IEEE Trans. Neural Networks.

[77]  C. Schmid,et al.  On the burstiness of visual elements , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.